
ARTICLE IN PRESS
0378-4371/$ - se

doi:10.1016/j.ph

�Correspond
E-mail addr
Physica A 367 (2006) 595–612

www.elsevier.com/locate/physa
Dynamics of three-state excitable units on
Poisson vs. power-law random networks

Anne-Ruxandra Carvunisa, Matthieu Latapyb,�, Annick Lesnec,d,
Clémence Magniena, Laurent Pezarde,f
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Abstract

The influence of the network topology on the dynamics of systems of coupled excitable units is studied numerically and

demonstrates a lower dynamical variability for power-law networks than for Poisson ones. This effect which reflects a

robust collective excitable behavior is however lower than that observed for diffusion processes or network robustness.

Instead, the presence (and number) of triangles and larger loops in the networks appears as a parameter with strong

influence on the considered dynamics.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It has been known for only a few years that most real-world networks (like for instance the internet, social
networks, biological networks, and presumably neural networks) have common topological properties, which
shows that they are very different from both regular and random networks. In particular, their degree
distributions, i.e., for each integer k the fraction pk of nodes with exactly k links, are very heterogeneous. See
[1–5] for experimental evidence based on network reconstruction from extensive data, and [6–11] for
theoretical surveys. Quite often, this qualitative heterogeneity can be turned into a quantitative feature: the
degree distribution exhibits a power-law decay pk�k�a with exponent a between 2 and 3:5. This is in sharp
e front matter r 2006 Elsevier B.V. All rights reserved.
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contrast with regular lattices (having a constant degree, i.e., single-valued distributions) and random networks
(exhibiting Poisson degree distributions) [12,13]. Since then, much work has been done to understand the
impact of this property on various phenomena of interest, for instance diffusion phenomena [14–17] and
robustness of networks [18–23]. All these studies conclude that there is a strong influence of the network’s
degree distribution on its behavior: power-law networks are more prone to infections, more vulnerable to
targeted attacks, and less sensitive to random failure.

Comparatively very few works have tackled the influence of network topology on the dynamics of units
located at the network nodes and coupled along the network links. As a matter of fact, dynamics of coupled
units have been mostly studied on regular topologies (and then termed ‘‘coupled map lattices’’): units are
placed on lattices and are coupled either with their neighbors (local coupling) or with all the other units (global
coupling) [24]. But the far-from-regular topology of real interaction networks, in particular their
heterogeneous degree distribution, strongly suggest these studies’ extension to power-law networks [9]. The
challenge, for instance in the context of biological networks, e.g. neural networks, is to understand the ways of
regulation, optimization, adaptation and control of their dynamics.

In this spirit, we investigated the influence of the topology on the dynamics of a system of very simple
excitable units, modeled as a 3-state deterministic automaton. The present contribution thus stands at the
crossroads between complex network studies and cellular automata [25–28] and as such, it relies on systematic
numerical experiments. Among the possible determinant topological features, we here focused on the one
which has been proved to be central in many contexts, namely the degree distribution.

We chose on purpose a minimal dynamic model, to better evidence the role of network topology, with no
side effects due to some peculiar detail of the model. Moreover, in order to focus on differences in the
dynamics caused by different topological features, the dynamics’ rules will remain constant for all the
simulations. In such a setting, the complexity originates from the interplay between global statistical features
of the network (mainly its degree distribution), local deterministic updating rules, and initial conditions. In
consequence the following alternatives are central in our analysis, and will be detailed and discussed all along
the exposure: Poisson vs. power-law degree distributions, microscopic vs. macroscopic features, transients vs.
asymptotic regimes, typical vs. special instances for the networks and for the initial states.

Similar studies have already been conducted with 2-state units, with two different classes of models for the
dynamics: either 2-state cellular automata [29,30], or random Boolean networks [31,32]. In the first class, the
state of a node at time tþ 1 is 1 if a sufficiently large number of its neighbors are in state 1 at time t, and 0
otherwise. In the second class, the updating rule is not built on a criterion involving the neighborhood state,
but chosen at random (for each node) among all the possible rule tables mappingg each configuration of the
node neighborhood to the node output state; a rationale for using such a fully random choice is to account for
the presence of both excitatory and inhibitory connections [33,34]. Let us also mention a recent seminal study
addressing the same issue of the influence of network topology in the context of evolutionary dynamics on
networks modeling population structure [35].

Although a 2-state model has proved to be relevant for modeling associative memory in neural networks
[36], it is not sufficient to model typical excitable dynamics, mainly the refractory phase and associated delay in
the reactivation. On the contrary, it has been acknowledged for many years that 3-state models are
paradigmatic examples of excitable units, see for instance [37–39]. Among the very few papers investigating the
influence of the neural network topology on its dynamics, we may cite a study considering sparse networks
[40]. More recently, [41] has addressed this question with a model of epileptic seizure as a topologically-
induced dynamic transition. But this work relies on a topology which lacks realism, namely an alternative
between regular one-dimensional and small-world networks [29].

Experimental investigations of the exact network topology are out of reach at the neural level. At an upper
level, evidence for heterogeneity in the degree distribution has been obtained for the network connecting
cortical areas in mammalian brains [42]; the authors suggest among other functional implications that
such heterogeneous structure and associated degree distribution reflected on cortical activation patterns.
This is also discussed in Ref. [43], which motivates further the issues addressed on theoretical grounds in the
present paper.

The presentation is articulated as follows. We define our model, notations and investigated properties
in Section 2; we also give the details and rationale for the methodological choices involved in the simulations.
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We present in Section 3 our first observations on the model. This provides guidelines for a more detailed and
systematic numerical exploration, namely a comparative study, for various network topologies, of the
influence of initial state (Section 4), the convergence time (Section 5) and the period (Section 6). Section 7
summarizes our results in terms of the influence of topology on the dynamics and presents directions for
further research.

2. Preliminaries

Let us first define our dynamic model, namely a deterministic 3-state cellular automaton, and contrast it
with two seemingly close models of epidemic spreading, the so-called SIS and SIR models. Concerning
investigated properties, we distinguish between microscopic features, at the level of phase space trajectories,
and macroscopic order parameters. We will also discuss this below. Finally, we will detail methodological
issues.

2.1. The model

Any model accounting for the dynamic behavior of coupled units is defined by two basic ingredients: the
network G of coupling interactions and the individual dynamics. The network is described as a pair G ¼

ðV ;EÞ where V is the set of units, identified with the nodes of the network, and E � V � V is the set of links
mediating their interactions. We here considered undirected links, making no distinction between ðu; vÞ 2 E

and ðv; uÞ 2 E. The two main parameters are the number N of nodes and the number M of links. The network
topology is locally characterized by the neighborhood V ðvÞ ¼ fu 2 V ; ðu; vÞ 2 Eg of each node v 2 V . The
number of nodes in V ðvÞ, i.e., the number of nodes directly connected to v, is called the degree of v. The
associated global, statistical feature is the degree distribution ðpkÞkX0 giving for each integer k the fraction pk of
nodes of degree k.

The response of an excitable element (for instance a neuron, a heart cell or certain artificial devices) to a
finite stimulus begins with a non-linear burst of activity: the excited stage. It is followed by a decrease of the
activity below its reference level, during which the element is insensitive to stimuli, hence the name refractory

stage for this phase. The element then returns to its stable reference state, and remains in this quiescent state

until it experiences another stimulus. The remarkable fact about real excitable units is that the duration, shape
and amplitude of the stimulated dynamic sequence is almost insensitive to the stimulus, provided it is strong
enough. This all-or-none, invariant feature leads to the description of the excitable behavior by a
deterministic, discrete time and symbolic dynamics. Each node v 2 V can be in three different states: quiescent

(q), excited (e) and refractory (r). We denote by stðvÞ 2 S ¼ fq; e; rg the state of v at discrete time t.
In a network, the stimulus experienced by the unit v comes from the excitable units coupled to v, namely

u 2 V ðvÞ. We here consider the case when the excitation of one neighbor u 2 V ðvÞ is enough to excite v. The
behavior of v will be the same if a larger number of its neighbors are simultaneously excited. Such all-or-none
output obviously smoothes out fluctuations in the inputs received by v as well as superimposed noise, further
supporting the consideration of a deterministic dynamic framework. Accordingly, the evolution of the system
is achieved through a synchronous updating at discrete times (with a constant time step Dt ¼ 1) according to
the following rules:
�
 a quiescent node becomes excited if at least one of its neighbors was excited at the previous step: if stðvÞ ¼ q

and there exists u 2 V ðvÞ such that stðuÞ ¼ e, then stþ1ðvÞ ¼ e; otherwise stþ1ðvÞ ¼ stðvÞ,

�
 an excited node becomes refractory at the next step: if stðvÞ ¼ e then stþ1ðvÞ ¼ r,

�
 a refractory node becomes quiescent at the next step: if stðvÞ ¼ r then stþ1ðvÞ ¼ q.

Note that these dynamic rules are applicable to any topology. This model satisfies the ‘‘quiescent condition’’
[25]: the state where all nodes are quiescent is an equilibrium state (and is the only one). Since it is a
deterministic dynamics, we can easily compute any state st0 ðV Þ for t0Xt if we know stðV Þ (and of course G). An
instance of the model is then entirely defined by a pair ðG; s0ðV ÞÞ where G is a network, V its set of nodes and
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s0ðV Þ its initial state. The dynamics’ rules prevent self-inputs, since only excited nodes influence quiescent
states, hence a node never influences itself; in consequence, ðv; vÞeE by convention.

The choice of a threshold equal to 1 implies that excitation of a node is transmitted to all its quiescent
neighbors: the neighborhood size will thus presumably act as an amplifier (around hubs, i.e., nodes of high
degree) or a suppressor (around nodes of low degree, e.g. in a linear chain). Excitation locally propagates into
quiescent regions, followed by an edge of refractory states, then by quiescent states. The existence of refractory
states prevents back propagation: excitation transmitted from v to u at time t cannot be transmitted back to v

at time tþ 1. Re-entrance of excitation in v might occur only if there exists closed paths (named cycles)
allowing to bypass the refractory line. These qualitative properties, associated with a local excitability
threshold equal to 1, hint at an influence of the topology on the collective dynamics (beyond the mere global
threshold effect that would arise with values larger than 1 for the local threshold). This supports our choice of
this model as presumably the best-suited to the issue addressed here.

2.2. Comparison with SIS/SIR models

Two models seemingly very close to the above one, namely SIS and SIR, have been widely studied in the
literature, in particular, in what concerns the influence of the network topology (e.g. the difference in behavior
on Poisson and power-law networks).

In the SIS model, see for instance [44,45], the unit is either susceptible or infected; its state thus belongs to
S ¼ fs; ig and evolves according to the following dynamic rules:
�
 if stðvÞ ¼ s and there exists u 2 V ðvÞ such that stðuÞ ¼ i, then stþ1ðvÞ ¼ i; otherwise stþ1ðvÞ ¼ stðvÞ,

�
 if stðvÞ ¼ i, then stþ1ðvÞ ¼ s.
The main difference with our model lies in the absence of a delay in the recovery (no refractory state).
Backward propagation is then possible and it has crucial consequences on the results as we shall see in the
following.

In the SIR model [44,46,47], the state space is S ¼ fs; i; rg, for susceptible, infected and removed, respectively.
These names reflect the updating rules:
�
 if stðvÞ ¼ s and there exists u 2 V ðvÞ such that stðuÞ ¼ i, then stþ1ðvÞ ¼ i,

�
 if stðvÞ ¼ i then stþ1ðvÞ ¼ r,

�
 in the other cases stþ1ðvÞ ¼ stðvÞ.
Therefore, a node reaching the removed state does not evolve anymore and has no influence on its neighbors; it
might be ignored. In consequence, infection dies out in a finite network or runs away from its source in an
infinite one. This model thus captures only propagating front waves of infection starting from the initially
infected nodes.

Let us finally underline that, in our model, investigating the influence of the local excitability threshold value
(fixed to 1 in the present study) would have been very close to studies conducted on SIR/SIS models [14,15].
These studies evidence a critical value (quite analogous to a percolation threshold) above which infection or
equivalently excitation transmission is so hampered that it fades away to 0 (recall that it is short-lived at a
given site). This issue, mentioned in our perspectives, is nevertheless out of our present focus.

2.3. Microscopic observables

Given an instance ðG; s0ðV ÞÞ of our model, its dynamics is nothing but a trajectory in the phase space SN

containing the 3N possible configurations of the N node states (this is the viewpoint of dynamical system
theory). The phase space SN being finite, any trajectory ½stðV Þ�tX0 is eventually periodic. We define the period

pðG; s0ðV ÞÞ of the system as the smallest integer p40 such that stðV Þ ¼ stþpðV Þ for a time t. Since the dynamics
is discrete in time, trajectories originating from different initial conditions could merge. In particular, before
reaching its asymptotic periodic regime, a trajectory will in general exhibit a transient, non-periodic regime,
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whose duration will be called the (microscopic) convergence time. More precisely, we define the convergence
time cðG; s0ðV ÞÞ of the system as the smallest integer t such that stðV Þ ¼ stþpðV Þ for an integer p.

2.4. Macroscopic observables

Given the state stðV Þ of the system at a given moment t, one may also observe the macroscopic state
StðV Þ ¼ ðf tðqÞ; f tðeÞ; f tðrÞÞ where f tðqÞ, f tðeÞ, and f tðrÞ denote the fractions of quiescent, excited, and refractory
nodes at time t, respectively. This is a viewpoint in the spirit of statistical mechanics, and the fractions are
termed the ‘‘order parameters’’ of the system in this context. These global statistics, providing macroscopic
summary of the system state, will be of great importance in the following. At this macroscopic level, the
dynamics of an instance of our model is a trajectory in the macroscopic state space ½0; 1�3. This trajectory
might have a period, denoted by PðG; s0ðV ÞÞ but we cannot define it using the first time the same macroscopic
state is reached twice. Indeed, this does not mean that it will be reached again, since it may stand for different
microscopic states. We therefore define it as the smallest integer p40 such that there exists a time t such that
for all integer i: StðV Þ ¼ StþipðV Þ. The smallest such t is called the macroscopic convergence time CðG; s0ðV ÞÞ
of the system.

Notice that we always have CðG; s0ðV ÞÞpcðG; s0ðV ÞÞ and PðG; s0ðV ÞÞppðG; s0ðV ÞÞ. We can even notice that
pðG; s0ðV ÞÞ is a multiple of PðG; s0ðV ÞÞ and that there may be many instances such that PðG; s0ðV ÞÞ ¼ 1,
whereas the only cases where pðG; s0ðV ÞÞ ¼ 1 is when there exists a time t at which stðvÞ ¼ q for all v 2 V , i.e., if
the trajectory reaches the unique (microscopic) equilibrium state of the dynamics.

2.5. Random networks

There is a huge variety of networks on which the dynamics may be studied (the updating rules define a
consistent evolution whatever may be the underlying topology). We however have specific questions in mind,
mainly the impact of the underlying degree distribution on the system behavior. Accordingly, we look for
possible differences between the dynamics on qualitatively different topologies, spanned by the paradigmatic
Poisson and power-law degree distributions. We used the two following models (implementations of these
models are available at [48], see also methodological details at the end of the present section).
�
 The first one is the classical Erdös–Rényi model [12,13], which samples uniformly at random networks
among all the ones with a given number N of nodes and a given number M of links by choosing M pairs at
random. At the infinite limit, this random network model is equivalent to the model where the network is
constructed from a given number N of nodes, each possible link being added with a probability p

(independently of the other links).

�
 The second one is the configuration model [49], which samples uniformly at random networks among all the

ones with a given number N of nodes and a given degree distribution ðpkÞkX0. One first samples the degree
of each node according to the degree distribution, and then links random pairs of nodes as long as they do
not have as many links as this degree.

Note that in both models the connections are symmetric: the excitation might propagate both ways. The
presence of a refractory step nevertheless prevents from immediate backward propagation, as noticed above.

The Erdös–Rényi model gives networks with Poisson degree distributions, pk�e
�llk=k!; it thus exhibits a

typical degree l (coinciding with the average degree) and an exponential decrease pk�e
�k lnð1=lÞ for large k

values. These networks therefore do not fit the heterogeneous degree distributions met in practice.
To generate more realistic model networks, we shall use the configuration model, able to produce networks

with power-law degree distributions pk�k�a (also termed ‘‘scale-free networks’’ since a power-law degree
distribution does not put forward any characteristic degree value, i.e., there is no typical scale for the degree).
Notice that it is not the classical Albert–Barabási model [50] often used to generate power-law networks. The
configuration model has the advantage of producing networks with any prescribed degree distribution, which
is crucial here. The exponent of the law should satisfy a41 so that the distribution can be normalized to 1.
Power-law networks have a high fraction of small-degree nodes, but also a non-negligible number of very-high
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degree nodes. In consequence, the statistical average degree hki no longer coincides with any typical degree
value. It is besides well-defined only for a42. It is possible to compute the exact expression of hki as a function
of a, but for qualitative discussion, the rough estimate hki � ða� 1Þ=ða� 2Þ obtained in the continuous
approximation for k will be more useful. Average degree is then larger than 3 for ao2:5.

2.6. Random initial states

As there are many ways to choose a network G ¼ ðV ;EÞ to define an instance of our model, there are many
ways to choose an initial state s0ðV Þ. In order to keep things simple and to focus on the influence of the
topology on the dynamics, with the least possible non-topological sources of bias, we used random initial
states. This will prove to be sufficient in the following.

More precisely, given three positive numbers pq, pe and pr with pq þ pe þ pr ¼ 1, we sample independently
the state of each node, this state being quiescent, excited or refractory with probability pq, pe and pr,
respectively. We call an initial state obtained in this way a ðpq; pe; prÞ-initial state. Accordingly, the fractions
½f 0ðqÞ; f 0ðeÞ; f 0ðrÞ� of nodes in each state are random variables. Only their statistical mean are prescribed,
respectively equal to ðpq; pe; prÞ, with a fluctuation of order Oð1=

ffiffiffiffiffi
N
p
Þ where N is the total number of nodes.

2.7. Mean-field approach

Given the model and its dynamics, analytical studies rely on a mean-field-like approach [30]. Let us sketch
its basic principles, features and flaws, motivating our numerical approach.

For any node v 2 V and state s 2 S, let us denote by ctðs; vÞ the Boolean function equal to 1 if stðvÞ ¼ s and
0 otherwise. We then have for all v,

P
s2S ctðs; vÞ ¼ 1 and for all s, f tðsÞ ¼ ð1=NÞ

P
v2V ctðs; vÞ. Denoting Y ð Þ

the Heaviside function (Y ðxÞ equals 1 if xX0 and 0 otherwise), the dynamics is described by the three
following equations, for all tX0 and v 2 V :

ctþ1ðr; vÞ ¼ ctðe; vÞ,

ctþ1ðe; vÞ ¼ ctðq; vÞ � Y
X
u2V

lðu; vÞctðe; uÞ � 1

" #
,

ctþ1ðq; vÞ ¼ 1� ctþ1ðr; vÞ � ctþ1ðe; vÞ,

where lðu; vÞ is 1 if the link ðu; vÞ exists and 0 otherwise.
In the mean-field framework, one approximates the average of products ð1=NÞ

P
u2V lðu; vÞctðe; uÞ by the

product of averages ð1=NÞ
P

u02V lðu0; vÞð1=NÞ
P

u2V ctðe; uÞ. But
P

u2V lðu; vÞ is nothing but the degree kv of v

and
P

u2V ceðt; uÞ can be approximed by Nf tðeÞ. The main equation above then becomes

ctþ1ðe; vÞ ¼ ctðq; vÞ � Y ðkvf tðeÞ � 1Þ.

At this stage, we can obtain an interesting conclusion concerning our model. Consider an instance ðG; s0ðV ÞÞ
with period pðG; s0ðV ÞÞ ¼ 3. One can easily show (we will provide a proof below) that this implies that no node
stays in the same state (including the quiescent one) more than one time step in a row. In the mean-field
framework, this requires that kvf tðeÞX1 for all v 2 V , i.e., kvX1=f tðeÞ: a mean-field approach could be valid
only if the average degree is large enough, which will be confirmed by experiments in the following.

We see from the above equations that this mean-field approach has turned the original cellular automata
into a coupled map lattice, composed of N units with two variables ½ctðqÞ; ctðeÞ� each. Such coupled map
lattices do not faithfully account for all the correlations present in the original system. Moreover, to get
analytically tractable equations, one has to further reduce the description and work at the level of fractions
f tðsÞ, s 2 S (or at best at the level of pair correlation functions describing the joint statistics of the states of a
pair of neighbors). Further decoupling approximations are then required to get closed evolution equations.
Notwithstanding the questionable validity of the involved approximations, the resulting framework is
obviously not a relevant approach to study dynamic properties at the level of trajectories, since it cannot
capture notions like period, convergence time, etc. on which this paper focuses. It can neither fully account for



ARTICLE IN PRESS
A.-R. Carvunis et al. / Physica A 367 (2006) 595–612 601
the spatial heterogeneity and correlations. In consequence, the issues addressed in this paper are entirely out of
reach in a mean-field approach, motivating our empirical, though rigorous, approach based on numerical
simulations.

2.8. Methodology

The networks obtained with the models presented above are not always connected, i.e., there does not exist
a path between all pairs of nodes. The dynamics then runs independently on the various connected
components, hence what really makes sense is to consider only the largest connected component. The ensuing
flaw in comparative studies is the possibly varying size NccpN of this connected component. Generating
random connected networks with prescribed degree distribution is possible but it is a difficult task [51] and it
has important drawbacks in our context. Moreover, whenever the average degree is not too low (basically
larger than 2), the largest connected component contains most (if not all) nodes [12,49,52]. Finally we decided
not to include the connectedness constraint in the generating procedure, but rather to keep a posteriori the
largest connected component. This is very classical in complex network studies.

We call a l-Poisson network any network obtained by generating a Poisson network of average degree l
with the Erdös–Rényi model and then keeping only its largest connected component. This restriction slightly
modifies the degree distribution, e.g. the probability that a node has degree k ¼ 0 now vanishes, which implies
that the normalization of the initial Poisson distribution is modified accordingly; in consequence, l-Poisson
networks have an average degree larger than l, roughly by a factor of 1=ð1� e�lÞ. If l is larger than 2,
however, the two networks are almost identical (since p0 ¼ e�l51), and the larger l the more identical they
are. Likewise, we call an a-power-law network any network obtained by generating a random network with
degree distribution pk�k�a with the configuration model and then keeping only its largest connected
component. The largest connected component is small (less than 10% of the network) only for a43:5
(then hkio2) whereas it almost, if not exactly, coincides with the whole network for hki42 (i.e., smaller a
values). Like in l-Poisson networks, restriction to the connected component implies that a-power-law
networks have an average degree slightly larger than the average degree of the original network.
Likewise, their degree distribution may differ significantly from a power law with exponent a at low
values of k. But in most cases the connected networks are almost identical to the original ones, and most
importantly, their degree heterogeneity, which is the relevant feature in the present study, are comparable. In
conclusion, the restriction to the largest connected component has no impact in most practical cases, since the
original network is connected whenever the average degree is not too close to 2. In some limited cases,
however, it may have an influence on the interpretation of our results, which will then be discussed
accordingly.

All the networks considered in the simulations will be l-Poisson or a-power-law networks, as described
above. The parameters of interest, quantifying the network topology, are the average degree in the first case,
and the power-law exponent in the second case. To compare these different classes of networks, we shall often
express the results on power-law networks in terms of their average degree (empirical average computed in
each sample) in addition to their exponent. In numerical studies, in order to minimize sampling and finite-size
effects, we shall always consider the empirical average degree, computed in each configuration as an average
over all the nodes of the connected component. Parameter ranges considered here will cover the values met in
practice, namely l from 1 to 20 and exponents a from 1:5 to 5. The parameters leading to average degrees close
to 2, basically l between 1 and 2:5 and a larger than 3 generate extremal cases as explained below.1

The initial states considered in all the simulations will be random initial states, inducing some variability
from one sample to another. Due to the strong coupling between neighboring units and the ensuing collective
behavior of the network, it is a priori possible that changing only one node’s initial state has significant
consequences on the overall dynamics. However, the investigations conducted on this possible sensitivity
showed that it does not affect the observables considered in the present paper (convergence time, period and
average excitation), thus validating a plain random sampling of the initial state.
1The average degree cannot be significantly lower than 2 in a connected component, the worst case being that of trees, where it is equal

to 2ðN � 1Þ=N.



ARTICLE IN PRESS
A.-R. Carvunis et al. / Physica A 367 (2006) 595–612602
From a probabilistic point of view, network configurations where the average degree k is close to 2 or
ðpq; pe; prÞ-initial states with at least one very low ps (with s 2 S ¼ fe; q; rg), are very rare; moreover, the
variability is high in these extreme cases. We shall therefore call them non-typical cases whereas the other cases
will be called typical cases. We expect, and our results will confirm this, that the observed behaviors are very
robust in typical cases, whereas they are less reproducible, i.e., more sensitive to minute variations of network
configuration or initial state, in non-typical cases.

Let us end this section with a few technical points. All the networks considered in the paper have N ¼ 1000
nodes. This is large enough to avoid small-size effects (which we checked on larger networks), to capture a
representative view of the dynamics and to get a good statistical behavior. For instance, when performing the
random initialization with probabilities pe, pr and pq, the associated fluctuations of, say, f ðqÞ is 1% or 2%

percents (more precisely, df ðqÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqð1� pqÞ=N

q
, i.e., df ðqÞ � 0:015 for pq ¼

1
3
). Moreover, considering larger

networks would make some of our experiments computationally intractable.
Our simulations have been performed on networks with average degree up to hki ¼ 20: indeed, preliminary

tests have shown no significant differences in observable properties between this maximal value and higher
values of the average degree. Finally, for all investigated quantities x (the fractions f ðaÞ, the convergence time,
the period), we chose to visualize the statistical dispersion over a sample by plotting the ensemble average x̄,
together with this value plus (resp. minus) the average difference Dxþ (resp. Dx�) between values larger than x̄

(resp. smaller) and x̄. The rationale for considering such differences Dx	, rather than the standard deviation, is
to visualize separately the dispersion of x towards larger (resp. smaller) values than the ensemble average x̄.
Moreover, the interval ½x̄� Dx�; x̄þ Dxþ� gives a better estimate of the typical range of values of x in case of
non-Gaussian statistics.
3. Basic properties of the dynamics

We here present some general properties of the dynamics, providing hints and guidelines in devising the
systematic numerical studies presented in the following sections.

As already discussed, any trajectory of our model always reaches a periodic regime with period p, whatever
the network topology and the initial state. This implies a periodic behavior at the macroscopic level too.
Moreover, the relations f tþ1ðrÞ ¼ f tðeÞ and f tðqÞ ¼ 1� f tðeÞ � f tðrÞ imply that if one fraction f tðsÞ is periodic,
the two other are also periodic with the same period, denoted by P.

The series of fractions ðf tðsÞÞtX0 for each s 2 S ¼ fq; e; rg therefore, are all periodic with the same period P.
We insist however on the fact that there is no other obvious relation (with or without delay) between these
fractions, and that the microscopic period p cannot be deduced from them: we can only state that p is an
integral multiple of the macroscopic period P. The full dynamics in the phase space SN deeply depends on the
underlying topology (and possibly on its initial state). We elaborate further on this fact below, first by showing
what can (and cannot) occur with our model, then by examining representative instances, and finally by
studying average and extremal behaviors in typical and non-typical cases.
3.1. Possible and impossible behaviors

From the very definition of the model, one can easily notice that the smallest non-trivial period is p ¼ 3
(whereas p ¼ 2 is possible in the SIS model, for instance). It is in particular observed in any elementary pattern
of 3 nodes connected into a triangle and initially in the state ðe; q; rÞ, then evolving by a mere circular
permutation of the individual states (namely ðr; e; qÞ, then ðq; r; eÞ and back to ðe; q; rÞ). A remarkable fact
concerning such a triangle is that its periodic behavior is preserved upon embedding into a larger network,
whatever its topology and initial state: when the initial state contains such a triangle, the period p of any
trajectory will necessarily be an integral multiple of 3, and excitation never dies out. The only state in which
the period is 1 is the one where all the nodes are in the quiescent state. This state can be reached from many
initial states (with the above-mentioned necessary condition that they do not contain a triangle in the state
ðe; q; rÞ). Therefore, we expect that excitation dies out less frequently in power-law networks, due to the higher
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probability of finding triangles ðe; q; rÞ in the initial state (there are significantly more triangles in power-law
networks than in Poisson ones [7]).

There is clearly no upper limit for the microscopic period p. Consider for instance a ring of n links:
G ¼ ðV ;EÞ with V ¼ f0; :::; n� 1g and E ¼ fði; i þ 1mod nÞ; i 2 Vg, and an initial state in which all nodes are
quiescent except two adjacent ones, one in excited state and the other in refractory state, i.e., s0ðvÞ ¼ q for all
v41, s0ð0Þ ¼ r and s0ð1Þ ¼ e. At each time step, the excitation and the following refractory state jump one
node forward, hence the period is pðG; s0ðV ÞÞ ¼ n.

At the macroscopic level too, the smallest non-trivial period cannot be lower than P ¼ 3. But many
microscopic evolutions may underly a macroscopic period of 1. They include of course the equilibrium state
(stðvÞ ¼ q for any time t and any node v 2 V ) but also many non-equilibrium regimes, as illustrated by the
above ring configuration for which f tðqÞ ¼ ðn� 2Þ=n, f tðeÞ ¼ f tðrÞ ¼ 1=n all along the time, and thus P ¼ 1.

Here again we can build examples with arbitrarily large period P. Consider for instance a network made of
two linear branches ðu1; . . . ; un�1Þ and ðv1; . . . ; vn�1Þ, stemming from the same node u0 and joining in a node un,
then closed with an additional link from un to u0. Starting from an initial state in which s0ðu0Þ ¼ e, s0ðunÞ ¼ r,
and all other nodes are in the quiescent state leads to a periodic trajectory of macroscopic period P ¼ nþ 1
(which happens to be equal to the microscopic period p in this particular case). Another meaningful example is
provided by a ‘‘decorated ring’’: a network composed of a ring of n links and an additional node connected to
one node on the ring (a ‘‘dangling end’’, see below): G ¼ ðV ;EÞ with V ¼ f0; :::; ng and
E ¼ fði; i þ 1mod nÞ; 0pipn� 2g [ fðn� 1; 0Þg [ fð0; nÞg. Then, again consider an initial state where all the
nodes are quiescent except two adjacent ones, one in the excited state and the other in the refractory state,
i.e., s0ðvÞ ¼ q for all v41, s0ð0Þ ¼ r and s0ð1Þ ¼ e. Then the macroscopic period is PðG; s0ðV ÞÞ ¼ n (here equal
to the microscopic period). Actually, the presence of the dangling end affects only the macroscopic period (it
would be P0 ¼ 1 in a plain ring, whereas the microscopic period would still be p0 ¼ n).

The same kind of remarks can be done concerning the convergence time. One can for instance consider a
chain of length n: G ¼ ðV ;EÞ with V ¼ f0; :::; ng and E ¼ fði; i þ 1Þ; 0piong with all nodes initially in the
quiescent state, except node 0 in excited state: s0ðvÞ ¼ q for all v40 and s0ð0Þ ¼ e. Then the system will reach
the equilibrium state where all the nodes are quiescent (with period 1) only after nþ 2 time steps. This example
also stands for macroscopic convergence time, which is equal to the microscopic one in this case.

These examples show that both period and convergence time are non-trivial features of the model and
deserve more attention. Moreover, they underline the importance of carefully distinguishing between the two
levels, termed microscopic and macroscopic, at which one may observe the model.

Before entering in the first details of our numerical experiments, let us make a last remark: if a system is in a
non-trivial periodic regime then all its nodes contribute to the dynamics in the sense that no node stays in the
same state forever. This is obvious for all states but the quiescent one. Suppose therefore there is a node
remaining forever in the quiescent state. This implies that none of its neighbors passes through the excited
state (else it would force it to change its state). Hence after at most one step (some of the node’s neighbors may
be in the state r), all its neighbors are in the q-state. By repeating this reasoning, we see that all nodes must
ultimately be in the quiescent state, which is in contradiction with our hypothesis. This proves the claim.
Notice however that the state of some nodes may change only once per period and that the period can be
arbitrarily large, as explained above. If the period is 3 (its minimal non-trivial value), however, these remarks
imply that no node stays in the same state more than one time step in a row.

The discussion above gave intuition on what can happen in the dynamics we observe. We gave some
instances which show that some particular behaviors are possible, which will be useful to understand the
experiments below. These behaviors may however be very rare and may never occur in typical instances
following from a random sampling. To explore this, we present now numerical experiments aimed at
observing what happens in typical and special cases.

3.2. Representative examples of the dynamics

We shall here observe and discuss the typical behaviors obtained on a given network with given initial
states. Since the behaviors discussed here are the same for Poisson and power-law networks, we shall only
present the Poisson cases.
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We plot in Fig. 1 the evolution of f tðsÞ for each a 2 S ¼ fq; e; rg, in two different cases: a typical Poisson
network (large value l ¼ 10, Fig. 1a) and a non-typical one (small value l ¼ 1, Fig. 1b), both with typical
initial states.

The typical case (Fig. 1a) is representative of what is observed on most such instances: the system reaches a
macroscopic periodic regime of period P ¼ 3 after a short macroscopic convergence time (generally Cp4 time
steps). In such cases, we generally observe that both the period and the convergence time are equal at the
microscopic and macroscopic levels, i.e., p ¼ P and c ¼ C (which is by no means neither obvious nor
necessary, as illustrated in the previous subsection).

For non-typical Poisson networks (Fig. 1b), a significant macroscopic convergence time (larger than 40 time
steps in the example) is observed, with high variability. Recall that it provides a lower bound for the
microscopic convergence time (cXC), which therefore is large too. Likewise, the period (which is too large to
be observed on the figure) can be large and has an important variability.

These observations are only a qualitative preliminary step, leading to the quantitative investigations
presented in the following sections, which supports their representativity.

3.3. Average and extremal behaviors

To enlighten the macroscopic behavior we may expect, we sample 1000 networks with the same average
degree and macroscopic initial states. The obtained ensemble average, minimum and maximum values of the
fraction of quiescent nodes at each time step are plotted in Fig. 2 (the fractions concerning other states
are observed to behave similarly). The fact that the ensemble average and extremal behaviors in typical cases
(Fig. 2a) is very similar to the behavior of any individual sample (Fig. 1b) confirms that both the convergence
time and the period are very robust, with respect to the microscopic details of both the underlying topology
and the initial state. In other words, in typical cases, the average degree and the initial fractions of nodes in
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Fig. 1. Examples of evolutions observed on the fractions f tðsÞ with s 2 S ¼ fq; e; rg (i.e., at the macroscopic level) for l-Poisson networks

with typical ð0:3; 0:3; 0:4Þ-initial states. (a) For a (typical) 10-Poisson network and (b) for a (non-typical) 1-Poisson network.
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networks.
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each state prescribe both the period and the convergence time. Otherwise, averaging over 1000 network
instances would smooth out the oscillations and the ensemble average would be constant.

This latter behavior is actually that observed for non-typical Poisson networks (still with typical initial
states), where the ensemble average fraction of quiescent nodes collapses to a constant (Fig. 2b). In fact, such
systems can reach the state where all the nodes are quiescent f tðqÞ ¼ 1, thus corresponding to the microscopic
equilibrium state and not only to a macroscopic stationary regime. This extinction happens quite often, which
noticeably increases the ensemble average value f̄ tðqÞ. This point is discussed further in the next section.
4. Influence of initial states

In the previous section we compared basic macroscopic properties of the dynamics on typical vs. non-
typical networks while the initial states were always typical ones: concerning these coarse dynamic features,
Poisson and power-law networks behave similarly. We now explore the influence of initial states, either typical
or non-typical, on the dynamics observed at the macroscopic level.

Let ða;b; gÞ denote a permutation of ðq; e; rÞ. To quantify the influence of the initial state (characterized by
any two fractions f 0ðbÞ and f 0ðgÞ), we observed, in the periodic regime, the mean (i.e., time-averaged over a
period) and extremal fractions of nodes in state a as a function of f 0ðbÞ, for a given fraction f 0ðgÞ. Numerical
experiments were conducted for a wide range of initial fractions and general classes of behaviors were
observed. These representative situations are illustrated here using a constant initial fraction of refractory
nodes f 0ðrÞ ¼ 0:3 (g ¼ r) and an initial fraction of excited nodes (b ¼ e) varying from 0 to 1� f 0ðrÞ ¼ 0:7. The
results are plotted in Fig. 3 for both typical and non-typical Poisson and power-law networks.
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Fig. 3. Ensemble average of the mean fraction (time average over a period) of quiescent nodes hf̄ tðqÞi and its statistical dispersion in the

asymptotic periodic regime as a function of the initial fraction f 0ðeÞ of excited nodes, with ð1� 0:3� f 0ðeÞ; f 0ðeÞ; 0:3Þ-initial states. (a) For
10-Poisson networks, (b) for 1-Poisson networks, (c) for 2:5-power-law networks and (d) for 3:5-power-law networks. For each value of

f 0ðeÞ, we plot the ensemble average over a set of 1000 instances of the time-averaged value of f tðqÞ; its statistical, possibly asymmetric,

dispersion is visualized by plotting the average plus (resp. minus) the average difference between it and values larger (resp. smaller) than it.

See the end of Section 2.8 for details on our notations.
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details on our notations.
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Fig. 5. A specially designed instance for which the generic identities pointed out in Fig. 4 should lead to the same fraction of quiescent

nodes in the asymptotic regime if they were reflecting an exact symmetry of the dynamics.
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These numerical experiments show that, for typical networks, notwithstanding their topology, the observed
behaviors are very robust with respect to the initial state; the variability is larger in case of non-typical initial
states. As already discussed, non-typical initial states (say, f 0ðeÞo0:03 or f 0ðqÞo0:03) on non-typical networks
tend to give trivial asymptotic dynamics; this is confirmed here as all the nodes are eventually in the quiescent
state.

Fig. 4 displays another feature of interest: that there exists symmetry relations between initial states, leading
to exactly identical dynamic plots as shown here on typical Poisson networks; similar symmetry properties are
observed with other average degrees and with power-law networks. It is important to notice that these
symmetries are statistical by nature, and are not a mere consequence of the dynamics and the ensuing relation
f tþ1ðrÞ ¼ f tðeÞ. Indeed, Fig. 5 displays an instance designed especially to give a counter-example. The leftmost
evolution starts from a ð0:5; 0:3; 0:2Þ-initial state and the rightmost from a ð0:2; 0:5; 0:3Þ-initial state; they
should therefore lead to similar macroscopic states according to the symmetries depicted in Fig. 4. And yet, in
the first case one obtains a steady macroscopic state where the fraction of nodes in each state are f ðqÞ ¼ 0:6,
f ðrÞ ¼ 0:2, and f ðeÞ ¼ 0:2, while they are f ðqÞ ¼ 0:8, f ðrÞ ¼ 0:1, and f ðeÞ ¼ 0:1 in the second case. This counter-
example reveals that we do not face a symmetry of the dynamics in all the cases but a statistical feature of the
evolution and/or of the topology, as observed at the macroscopic level: the observed symmetries generically
hold true but fail to be satisfied in some particular cases. One may wonder if there exists typical such instances,
but this is out of the scope of this paper.
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5. Convergence time

The results stated in Sections 3 and 4 involved fractions of nodes in each state, i.e., spatially averaged
quantities, what is called ‘‘order parameters’’ in the language of statistical mechanics. Let us now turn to
microscopic features, i.e., properties observed at the level of individual trajectories, in the phase space SN . In
the present section, we focus on the convergence time, namely the number of steps required to reach from a
given initial condition the corresponding asymptotic periodic trajectory. We shall compare Poisson networks
with power-law ones, for wide ranges of average degrees and exponents. In each case, we shall consider two
initial states, one typical and the other one representative of what we termed non-typical initial states,
i.e., with at least one very low fraction of nodes in one of the three states.

5.1. Poisson networks

The convergence time for Poisson networks is plotted in Figs. 6a–b as a function of the average degree
(empirical average computed in each sample), with both typical initial conditions (Fig. 6a) and non-typical
ones (Fig. 6b). This figure illustrates that the initial states and the topology play a somewhat similar role:
whereas in typical cases the convergence time is very robust (almost constant), non-typical initial states or non-
typical networks exhibit a stronger variability of the convergence time. Nevertheless, a remarkable fact is the
small statistical dispersion here observed. For both non-typical networks and non-typical initial states, the
convergence time is surprisingly less scattered than when only one of them is non-typical. This may be due to
the fact that, in these cases, the effective network, i.e., the largest connected component of a random network
of 1000 nodes, may actually be much smaller than the whole network thus finite-size effects take place
(e.g. non-typical initial states may lead to a null number of initially excited nodes).
Fig. 6. Convergence time c as a function of the average degree for Poisson (a and b) and power-law networks (c and d). For k-Poisson

networks, 1000 instances of networks are sampled for each integer value of k from 2 to 20. For power-law networks, 1000 instances of a-
power-law networks are sampled for each value of the exponent a from 1:5 to 5 with step 0:25. In each case, their convergence time

(starting from a typical initial state) is plotted (þ). Moreover, the ensemble average c̄ of the convergence time over each such sample, and

its statistical dispersion, as visualized by c̄, Dc� and Dcþ are plotted with lines. (a) With ð0:3; 0:3; 0:4Þ-initial states for Poisson networks, (b)

with ð0:69; 0:3; 0:01Þ-initial states for Poisson networks, (c) with ð0:3; 0:3; 0:4Þ-initial states for power-law networks and (d) with

ð0:69; 0:3; 0:01Þ-initial states for power-law networks.
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Fig. 7. Convergence time c as a function of the exponent a for power-law networks. For each value of a from 1:5 to 5 with step 0:25, 1000
instances of an a-power-law network and its initial state are sampled, and the associated convergence times are plotted. Moreover, the

average c̄ over each such sample, and Dc� and Dcþ are plotted with lines. (a) With typical ð0:3; 0:3; 0:4Þ-initial states and (b) with non-

typical ð0:69; 0:3; 0:01Þ-initial states.
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5.2. Power-law networks

We display in Figs. 6c–d similar plots for power-law networks. Despite they are obtained by varying the
exponent a, which is the relevant control parameter for such networks, we present plots as a function of the
average degrees (empirical average computed in each sample), and at the same scale as for Poisson networks
(Figs. 6a–b), in order to make the comparison easier. We shall present and discuss the same results plotted as a
function of the exponent below.

The general behavior is the same as for Poisson networks: the convergence time is very robust for typical
networks and initial states, but varies significantly and may be very large with non-typical networks or non-
typical initial states. However, it is clear from these plots that the convergence time is much less scattered on
power-law than on Poisson networks. This may be viewed as a quantitative consequence of the fact, discussed
in the preliminaries (Section 2), that the average distance in such networks is significantly lower than in
Poisson networks; therefore, the dynamics runs faster, reflecting in a shorter convergence time.

The natural control parameter for power-law networks being the exponent a of the power-law degree
distribution, let us now describe the influence of a on the convergence time (Fig. 7). The convergence time
reaches its maximum value for exponents between 3 and 3:5, for which the average degree is close to 2. It also
has its maximal variability for these exponent values, but remarkably, this variability remains moderate in all
cases. Smaller exponents yield a result similar to Poisson networks with large average degrees: the convergence
time is small and very robust. For larger values of the exponents, the convergence time remains short
and not very scattered. This can be traced back to finite-size effects, since for a43:5, the effective network,
i.e., the connected component, is strongly reduced (typically smaller than 10% of the initial set of nodes).
In the case of non-typical initial states, these finite-size effects are still stronger, since very few nodes, if any,
are initially in the excited state, and so the dynamics is trivial. Like in the case of Poisson networks, the
conclusion is that non-typical initial states increase the variability for typical networks, but decreases it for
non-typical ones.
6. Period

Our aim is now to study the period p of the dynamics, along similar lines as those we followed for the
convergence time (Section 5). Since the dynamics is deterministic, the system will always reach a periodic
regime. But the number of possible states is huge (3N ) and this periodicity might a priori be irrelevant
(undetectable) in a finite observation time. The striking result we shall present here is that it is not the case in
typical situations: a finite, even small, period p is observed. This periodicity means that many initial conditions
will evolve towards the same periodic trajectory. We plot this (microscopic) period p as a function of the
average degree for Poisson networks in Figs. 8a–b, for power-law networks in Figs. 8c–d, and finally as a
function of the exponent a of power-law networks in Fig. 9.
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Fig. 9. Period as a function of the exponent for power-law networks. For each value of the exponent a from 1:5 to 5 with step 0:25, 1000
instances of a a-power-law networks and its initial state are sampled and the associated periods p are plotted. Moreover, the sample

average p̄ and p̄ plus (resp. minus) the average difference between p̄ and values larger (resp. smaller) than p̄ are plotted with lines. (a) With

typical ð0:3; 0:3; 0:4Þ-initial states and (b) with non-typical ð0:69; 0:3; 0:01Þ-initial states.

Fig. 8. Period p as a function of the average degree for Poisson (a and b) and power-law (c and d) networks. For each network category,

1000 instances are sampled (together with initial conditions). The observed period for each instance is plotted (þ) for each integer value of

k from 2 to 20, for k-Poisson network and for each value of the exponent a from 1:5 to 5 with step 0:25 for a-power-law networks.

Moreover, the sample average p̄ and Dp� and Dpþ are plotted with lines. (a) With typical ð0:3; 0:3; 0:4Þ-initial states, (b) with non-typical

ð0:69; 0:3; 0:01Þ-initial states, (c) with typical ð0:3; 0:3; 0:4Þ-initial states and (d) with non-typical ð0:69; 0:3; 0:01Þ-initial states.
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The results confirm what was observed for the convergence time. First, the period is very robust for typical
networks and typical initial states. In other cases, quite different values may be obtained, but most of them are
very close to the average. Taking non-typical initial states on typical networks and non-typical networks with
typical initial states increases the variability. Finally, non-typical initial states on non-typical networks lead to
less variability than these two last cases, due to the reduced size of the effective (connected) network
underlying the dynamics.

These observations are valid on both Poisson and power-law networks, but again the results are less
scattered for power-law networks than for Poisson ones. This can be viewed as a consequence of the existence
of longer cycles (i.e., closed paths) in Poisson networks than in power-law ones.

Let us notice that the period often takes its minimal value p ¼ 3. It indicates that no node remains in the
same state several time steps in a row. In these cases, the macroscopic evolution may be described very easily
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since f tðeÞ ¼ f t�1ðqÞ ¼ f tþ1ðrÞ. Notice, however, that this does not imply that these fractions are equal to 1
3
;

only the time averages over a period are equal to 1
3 (since f t�1ðqÞ þ f tðqÞ þ f tþ1ðqÞ ¼ 1). At the microscopic

level, each e becomes r, each r becomes q, hence necessarily each q becomes e. Hence in the asymptotic periodic
regime with p ¼ 3, the evolution reduces to synchronized flips q! e! r! q with no latency in state q. The
excitable dynamics thus exhibits a kind of synchronization, but with a phase shift between neighbors, hence
associated with a very complicated and heterogeneous spatial structure.

In case of non-typical networks, the fact that the asymptotic regime reduces to an equilibrium state where
all the nodes are quiescent can be explained easily. Indeed, in such cases, as explained in the preliminaries
(Section 2), the network is often a tree, and one can prove by a simple recursion that the dynamics vanishes in
this case. Instead, as we have seen in Section 3, large cycles in the network may induce large periods and
convergence times. Such cycles exist only in non-typical networks. These two points together explain the
irregular behaviors observed for non-typical networks.

7. Conclusion and perspectives

In this contribution, we proposed a simple framework to study the dynamic behavior of coupled excitable
units. Analytic approaches, relying on mean-field or pair-correlation approximations, are insufficient to
faithfully capture the influence of network topology and initial state on phase-space trajectories. We thus
conducted a wide set of simulations. We focused on both macroscopic features, namely the average, minimal,
and maximal fractions of nodes in a given state in the periodic regime, and microscopic features, namely the
period of the asymptotic regime and the convergence time, at the level of phase-space trajectories. Our
investigations led us to introduce, as major determinants of the observed dynamic behavior, a notion of typical
networks vs. non-typical ones (those of low average degree, close to 2) and a notion of typical initial states vs.
non-typical ones (those with at least one very low fraction, say fo0:03).

Our first conclusion is that the behavior is very robust on typical networks and with typical initial states:
both the convergence time and the period are almost independent of the sample. When one turns to non-
typical networks and non-typical initial states, the variability increases. This may be seen as a consequence of
the fact that non-typical networks have large tree-like structures and cycles, which we have shown, play an
important role in the dynamics: they make it possible to design topologies with arbitrarily large convergence
time and period.

Our second conclusion is that the dynamics is more robust on power-law networks than on Poisson ones,
which may basically be a consequence of the existence of shorter paths in power-law networks than in Poisson
ones.

However, the behaviors of the dynamics on the two kinds of networks are quite similar: they do not vary
qualitatively like in the cases of network tolerance to failures and attacks [18–23] or diffusion processes
[14–17]. This leads us to our main conclusion: the dynamics studied here is only slightly sensitive to variations
in the degree distribution of the underlying topology; instead, it is highly related to the presence (and number)
of triangles and larger loops. It would therefore be highly relevant to now turn to studies addressing the
influence of the number of triangles and loops in the underlying topology on the dynamics. It appears clearly
from our study that this influence is central, and interesting behaviors would certainly be observed if we focus
on this parameter.

Let us however note that such a study is challenging, since one would have to use models of topologies with
triangles. The ones we used here, which are among the most classical ones in complex network studies, have a
number of triangles which vanishes for large network sizes (though more slowly for power-law networks than
for Poisson ones [7]). They have the advantage of uniformly sampling random graphs in a given class, and are
widely accepted as reference models. On the contrary, there is currently no known method to sample uniformly

a random graph with a given number of triangles. One would therefore have to use one of the many models
proposed to generate specific networks with many triangles, see for instance [8,53]. But each such model has its
own advantages and drawbacks, and there is currently no consensus on which model to use in experiments like
the ones we conducted here. Although much progress has been done in this direction, there is still much to do.

Finally, we therefore consider the study of the influence of the number of triangles in the network as one of
the most promising, but challenging, directions for further research.
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There are of course many other directions which may be explored to extend our work. Let us begin with the
precise study of size effects. We conducted experiments on networks with up to 100 000 nodes, and the results
were similar in most cases, but some computations are intractable for such sizes. Also, modeling dynamics on
directed and/or weighted networks remains to be done, but most of our framework and methodology can be
extended straightforwardly to these cases. By contrast, the issue of pattern formation, ubiquitous in cellular
automata studies, is here very complex since there is no simple underlying space. Finally, one may study the
impact of variations in the dynamic rules: the refractory stage may last several time steps, one may associate
an activation threshold to each node (thus prescribing the number of excited neighbors required to become
excited), one may consider stochastic rules to model internal noise or external influences (such variants have
been studied for SIS/SIR models), etc. An approach similar to the one presented here is relevant in all such
instances.

Conversely, the influence of the topology on dynamics may be used to infer topological properties (which
could not be directly measured) from the observed evolution. Such an inverse problem could be tackled
successfully only if different topologies discriminate clear-cut dynamic features, which seems not to be the case
for excitable dynamics (but the path has been traveled with some success for random Boolean networks [54]).

Finally, we would like to emphasize the fact that analytic approaches would be of high interest to describe
dynamics of the kind we discussed here. Exact solutions seem presently unreachable but mean-field
approximations and higher-order correlation equations may provide reference points with which to compare
simulation results. However, using such approaches in this context remains a challenging task.
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[30] C. Marr, M.T. Hütt, Topology regulates pattern formation capacity of binary cellular automata on graphs, Physica A (2005).

[31] J.F. Fox, C.H. Hill, From topology to dynamics in biochemical networks, Chaos (2001).

[32] M. Aldana, Boolean dynamics with scale-free topology, Physica D 185 (2003) 45–66.

[33] S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed nets, J. Theoret. Biol. 22 (1969) 437–467.

[34] S.A. Kauffman, The large scale structure and dynamics of gene control circuits: an ensemble approach, J. Theoret. Biol. 44 (1974)

167–190.

[35] E. Lieberman, C. Hauert, M.A. Nowak, Evolutionary dynamics on graphs, Nature 433 (2005) 312–316.

[36] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA 79

(1982) 2554–2558.

[37] G.K. Moe, W.C. Rheinboldt, J.A. Abildskov, A computer model of atrial fibrillation, Am. Heart J. 67 (1964) 200–220.

[38] C. Meunier, D. Hansel, A.D. Verga, Information processing in three-state neural networks, J. Statist. Phys. 55 (1989) 859–901.

[39] D.R. Carreta Dominguez, E. Korutcheva, Three-state neural network: from mutual information to the hamiltonian, Phys. Rev. E 62

(2000) 2620–2628.

[40] C. Meunier, H.F. Yanai, S. Amari, Sparsely coded associative memories: capacity and dynamical properties, Network 2 (1991)

469–487.

[41] T.I. Netoff, R. Clewey, S. Arno, T. Keck, J.A. White, Epilepsy in small-world networks, J. Neurosci. 24 (2004) 8075–8083.

[42] C.C. Hilgetag, M. Kaiser, Clustered organization of cortical connectivity, Neuroinformatics 2 (2004) 353–360.

[43] O. Sporns, G. Tononi, G.M. Edelman, Connectivity and complexity: the relationship between neuroanatomy and brain dynamics,

Neural Networks 13 (2000) 909–922.

[44] O. Diekmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,

Wiley, New York, 2000.

[45] J.O. Kephart, S.R. White, Directed-graph epidemiological models of computer viruses, in: Proceedings of the IEEE Computer

Society Symposium on Research in Security and Privacy, 1991, pp. 343–359.

[46] G. Abramson, M. Kuperman, Small world effect in an epidemiological model, Phys. Rev. Lett. 86 (2001) 2909–2912.

[47] D.H. Zanette, Critical behavior of propagation on small-world networks, Phys. Rev. E 64 (2001) 050901.

[48] J.-L. Guillaume, Random network generators, http://www.liafa.jussieu.fr/�guillaume/index.php?page=programs

[49] M. Molloy, B. Reed, A critical point for random graphs with a given degree sequence, Random Struct. Algorithms 6 (1995) 161–180.

[50] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512.

[51] F. Viger, M. Latapy, Random generation of large connected simple graphs with prescribed degree distribution, in: Lecture Notes in

Computer Science (LNCS) 3595, Proceedings of the 11th International Conference on Computing and Combinatorics COCOON

2005, Kunming, China, 2005, pp. 440–449.

[52] M. Molloy, B. Reed, The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput. 7

(1998) 295–306.

[53] J.-L. Guillaume, M. Latapy, Bipartite graphs as models of complex networks, in: Lecture Notes in Computer Sciences (LNCS),

Proceedings of the First International Workshop on Combinatorial and Algorithmic Aspects of Networking (CAAN), 2004.

[54] S. Kim, J.N. Weinstein, J.J. Grefenstette, Inference of large-scale topology of gene regulation networks by neural nets, in: Proceedings

of the IEEE International Conference of Systems, Man, and Cybernetics, 2003, pp. 3969–3975.

http://www.liafa.jussieu.fr/guillaume/index.php?page=programs
http://www.liafa.jussieu.fr/guillaume/index.php?page=programs

	Dynamics of three-state excitable units on �Poisson vs. power-law random networks
	Introduction
	Preliminaries
	The model
	Comparison with SIS/SIR models
	Microscopic observables
	Macroscopic observables
	Random networks
	Random initial states
	Mean-field approach
	Methodology

	Basic properties of the dynamics
	Possible and impossible behaviors
	Representative examples of the dynamics
	Average and extremal behaviors

	Influence of initial states
	Convergence time
	Poisson networks
	Power-law networks

	Period
	Conclusion and perspectives
	Acknowledgments
	References


