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Unité de Psychophysiologie Cognitive, LENA-Centre National de la Recherche Scientifique
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Abstract:We report here on a first attempt to settle the methodological controversy between advocates of
two alternative reconstruction approaches for temporal dynamics in brain signals: the single-channel
method (using data from one recording site and reconstructing by time-lags), and the multiple-channel
method (using data from a spatially distributed set of recordings sites and reconstructing by means of
spatial position). For the purpose of a proper comparison of these two techniques, we computed a series of
EEG-like measures on the basis of well-known dynamical systems placed inside a spherical model of the
head. For each of the simulations, the correlation dimension estimates obtained by both methods were
calculated and compared, when possible, with the known (or estimated) dimension of the underlying
dynamical system. We show that the single-channel method fails to reliably quantify spatially extended
dynamics, while the multichannel method performs better. It follows that the latter is preferable, given the
known spatially distributed nature of brain processes.Hum. Brain Mapping 5:26–47, 1997.
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INTRODUCTION

Since the eighties, the application of nonlinear dy-
namic methods to the study of surface recordings
(EEG) has provided new insights in experimental and
theoretical approaches to brain activity [Jansen and
Brandt, 1993; Nandrino et al., 1994]. The present article

focuses on a key step shared by all of these methods:
the reconstruction of a trajectory that mirrors the
evolution of the brain in its phase-space. This crucial
step can be performed using twomethods based either
on single or multiple channel recordings. The single-
channel reconstruction has so far been the mainstream
approach because of its clear mathematical basis (see
‘‘Reconstruction of dynamics from observations’’), but
it has led to questionable results when rigorously
tested [Theiler and Rapp, 1996; Pritchard and Duke,
1995]. Recent developments in spatiotemporal chaos
[Cross and Hohenberg, 1993] suggest that this method
is ill-suited for spatially extended activities, and if so,
this limitation would constitute a severe limitation for
the application of single-channel temporal reconstruc-
tion of the EEG. In this paper, we use computer
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simulations to investigate whether the single-channel
choice is thus limited for the study of EEG, and if so,
whether the use of the multichannel method is more
appropriate.

RECONSTRUCTION OF A DYNAMICS FROM
OBSERVATIONS

Any physical system, such as the brain, can be fully
described by the values of a certain number of vari-
ables representing its physical properties (e.g., the
neurons’ firing rate). The state vector is the vector
which coordinates are these variables. It represents
unambiguously the state of the system and determines
a trajectory in the phase-space that accounts for the
system’s dynamics. Well-known mathematical results
have shown that the system’s complexity can be
inferred from the topology of this trajectory [e.g.,
Eckmann and Ruelle, 1985]. In contrast, in experimen-
tal situations, the exhaustive determination of state
variables is not available, and thus the phase-space
trajectory is unknown. A partial approximation of the
topology must be reconstructed from partial, noisy
measurements of the system.
For the same reason, any proper estimation of the

experimental signals’ complexity needs the reconstruc-
tion, from the measurements, of measurement vectors
whose evolution over time sketches an object with a
similar topology to that of the complete phase-space
trajectory. In principle, there are twoways to obtain the
coordinates of these vectors: they can either be consecu-
tive values of one time series of measures [Packard et
al., 1980; Takens, 1981], or a set of simultaneous
independent observations [Guckenheimer and Buzyna,
1983]. The first method is usually called the single-
channel reconstruction, and the second the multichan-
nel reconstruction.
The introduction of reconstruction methods has led

to a flurry of reports concerningmany different natural
systems’ phase-space trajectories, typically related to
the complexity of the signal: the fractal dimension (an
estimation of the number of degrees of freedom of the
system), Lyapunov exponents (that quantify its sensi-
tive dependence to initial conditions), and the Kol-
mogorov entropy (that quantifies the loss of predictabil-
ity over time) [reviewed in Ott et al., 1994]. In some
cases, these indices have proven that specific complex
physical signals were not stochastic but chaotic [Guck-
enheimer and Buzyna, 1983]. In this context, chaos
means 1) nonlinearity, 2) a low noninteger dimension
(i.e., ,5), and 3) a sensitive dependence to initial
conditions. The correlation dimension (D2) has been
usually favored as the choice index for signal complex-

ity, since it gives an indication of the number of
independent variables of the system and thus allows
inference of models.

EEG AND LOW-DIMENSIONAL CHAOS

The previous approach was soon applied also to the
brain’s signals, in a rapidly expanding literature. The
‘‘chaotic’’ nature of surface cerebral activity was esti-
mated [Rapp et al., 1985, 1989; Babloyantz and Des-
texhe, 1986], until it was shown that linearly filtered
noise could display topological characteristics similar
to those of chaotic systems [Rapp et al., 1993]. It turned
out that before using the chaos quantification toolkit,
the nonlinear aspect of EEG signals had first to be
proven. A proper test for nonlinearity was devised
[Theiler et al., 1992], consisting of differentiating the
signal, by the means of any complexity index, from a
set of random time-series with the same linear charac-
teristics as the signal. Its application to the EEG
showed that most claims for low-dimensional chaos in
the EEG were erroneous [e.g., Pritchard and Duke,
1995].
This episode suggested that the use of nonlinear

analysis for the study of EEGs should be done with
great care. Nowadays, most authors agree that the
correlation dimension of a surface-recorded signal
reveals nothing about the ‘‘chaotic’’ nature of the brain.
Yet, some authors [Pritchard and Duke, 1995] still
conclude that it can permit statistical separation be-
tween tasks or pathological states, but even this sim-
pler claim is not that clear since others [Theiler and
Rapp, 1996] distrust it. The first ‘‘chaos-rush’’ seems to
be over.

SPATIOTEMPORAL CHAOS

So far the physical systems that had been shown to
generate chaotic signals were either confined in space
or recorded with a single probe, so that reconstruction
occurred only in time. Studies of nonlinear spatially
extended systems revealed the existence of chaotic
behaviors in both time and space [e.g., Chaté, 1995]. In
such systems, the spatial extension can not be ignored:
reciprocal effects circulate between the different re-
gions at a finite speed, and spatial heterogeneity arises
[Paladin and Vulpiani, 1994]; the decorrelation be-
tween the different parts of the system can result in
various spatiotemporal patterns, such as traveling
waves and spirals [e.g., Gaponov-Grekhov and Rabi-
novich, 1992]. To date, the theoretical understanding of
spatiotemporal chaos is still in its infancy [Cross and
Hohenberg, 1994], and insights on the subject are
provided by computer simulations and experimental
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observations [Kaneko, 1990; Manneville and Chaté,
1992]. However, it is generally thought that the main
techniques used for the quantification of nonspatially-
extended systems are not applicable where the spatial
dimension is involved [Abarbanel et al., 1993; Lorenz,
1991; Politi et al., 1989]. It is believed in particular that
reconstruction techniques must take into account the
spatial correlation within the system and require data
at different points in space [Cross and Hohenberg,
1993]. Therefore, use of the single-channel method for
the quantification of spatially extended systems (such
as the brain) is now seriously questioned.
These new findings could explain the repeated

failures of the single-channel studies of the EEG to
provide reliable results. The brain is certainly a nonlin-
ear, spatially extended system comprising coupled
assemblies of neuronal groups [Jansen, 1991]. How-
ever, the nonlinearity of the EEG has rarely been
observed in a stable and repeated manner using the
single-channel reconstruction.

SINGLE-CHANNEL VS. MULTICHANNEL

Since the multichannel reconstruction is based on
multiple site recordings and thus takes the system’s
spatial extension into account, it may constitute an
adequate alternative method. Moreover, it is a direct
application of the Whitney theorem [Whitney, 1936]
which states that an embedding can be obtained from
independent time series [see Sauer et al., 1991, for
generalization]. Some authors have already begun to
apply this reconstruction to EEG signals and have
found encouraging results [Dvorak, 1990; Wacker-
mann et al., 1993; Pezard et al., 1994, 1996a and b].
Hence, it is extremely necessary to investigate more
precisely the extent to which the multichannel recon-
struction could be better-suited than the single-
channel for the analysis of EEGs.
In the next section of this paper, we investigate the

adequacy of single-channel reconstruction for the study
of brain dynamics on a theoretical basis. This leads us
to several crucial questions that can be addressed by
the means of computer simulations. We then describe
the methods used in these simulations, based on the
reproduction of the experimental setups used for the
characterization of brain dynamics. ‘‘Results’’ will
show the multichannel and single-channel reconstruc-
tions applied to simulated EEG-like signals, their
correlation dimensions, and their relative perfor-
mance. We conclude with a general discussion.

SINGLE-CHANNEL RECONSTRUCTION
AND EEG: AN OVERVIEW

The EEG is the measure of the electrical activity of
the neurons [Nunez, 1981] as recorded on the scalp,
i.e., after diffusion through the brain, the skull, and the
skin. From an electric point of view, the brain may be
seen in a first approximation as a collection of dipoles,
lying in the cortex and perpendicular to its surface. In
this basic framework, it can therefore be fully de-
scribed at any given time, by the vector of all the
dipoles’ amplitudes, that we denote X(t). Each surface-
recording measures a potential that is a function of
X(t), so that the EEG signal can be expressed by an
n-dimensional vector

M(t) 5 H(X(t))(5 5m1(t), m2(t), . . . , mn(t)6),

where H is the measurement function, and n the
number of electrodes.
In dynamical studies, the brain is assumed to be a

deterministic dynamical system, such that X(t) evolves
over time according to a nonlinear equation:

≠nX/≠tn 5 Fµ(≠n21X/≠tn21, . . . , X),

where Fµ is its evolution function that depends on a set
of parameter µ. These parameters have a functional
significance: they determine the response of the system
to exogenous or endogenous stimulations. Different
parameters may correspond to different conditions of
attention, or to different pathologies, for instance. The
ambition of nonlinear studies of brain activity is to
detect parameter changes from a topological descrip-
tion of the EEG.

QUESTIONS RAISED BY THE
SINGLE-CHANNEL RECONSTRUCTION

General framework

The principle of the single-channel reconstruction
consists in choosing one electrode i, and building
k-dimensional vectors

Vi (t) 5 5mi(t), mi(t 2 t), . . . , mi(t 2 (k 2 1) 3 t)6,

where mi(t) is the potential recorded at time t and site i,
and t is a number called the delay; k is the embedding
dimension.
The potential picked up by an electrode can be

viewed as a linear combination of all the activities of
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the dipoles’ amplitudes. The contribution of each
dipole is the product of its amplitude by a weighting
coefficient that depends on its position and orientation.
If p denotes the amplitude of the dipole located in
spatial position M and if P expresses the electrode
position, then in a coarse approximation, the weight-
ing coefficient can be said to be proportional to
\PM \22 · cos(7p, PM8). Some of these coefficients can be
very small because the dipoles are far from the elec-
trode or badly oriented. Thus, an electrode does not
record evenly all the dipoles. This situation is of the
utmost importance for the single-channel reconstruc-
tion of the EEG. We will call ‘‘close’’ the dipoles that
contribute mainly to the signal, and ‘‘remote’’ those
that are far away or badly oriented.
To get a first insight, let’s consider a simplified case

where the brain is constituted of two uncoupled sets of
dipoles: s and s8. These two sets can be described by
two state vectors s(t) and s8(t) whose evolution is
defined by two uncoupled dynamical systems with
two correlation dimensions d and d8. The potential
measured by the electrode can be considered as a
linear combination of the dipoles’ amplitudes and can
thus be written:

M(t) 5 a 3 s(t) 1 b 3 s8(t)

(where 3 denotes the scalar product and a and b are
two weight vectors). If the coordinates of a and b are of
the same order, then the correlation dimension of the
trajectory reconstructed from M(t) using the single-
channel method must be roughly equal to the sum of d
and d8. On the other hand, if a (or b) is zero, the
expected dimension is d8 (or d). Besides these two
obvious cases, it is not clear what to expect. When \a \

is much bigger than \b \ , only a portion of the ‘‘brain’’
(s in this case) is actually recorded by the electrode.
The measure M(t) can thus be considered a measure of
s(t) with an additive noise caused by s8(t). But what
dimensionmust be expected? In principle, a reconstruc-
tion, from M(t), of the system dimension should yield
d 1 d8, because s8(t) is a part of M(t). In experimental
situations, we expect that there must be some value of
the ratio \b \/ \a \ under which the value given by the
single-channel reconstruction must be an inappropri-
ate approximation of d (because of noise from s8(t)).
However, in the brain, the two sets of dipoles are

actually coupled by a dense network of connections
[e.g., Braitenberg and Schüz, 1991; Friston et al., 1995].
In that situation, the activity of s8 affects the recon-
structed dimension either as an additive noise (as
described in the previous case), or via the connections

with s. According to classic mathematical results [Tak-
ens, 1981], the dynamics of a set of n coupled variables
can be reconstructed from any measure of these vari-
ables, e.g., the observation of only one of these vari-
ables. Thus, the dimension reconstructed by any elec-
trode should in theory be that of the entire system. In
practical situations, even when s and s8 are coupled, it
is nevertheless the case that the effect provoked by s8
fools the dimension estimate made from the surface
electrode. In that case, the dimension estimation is
encumbered by two difficulties: the noise from the
remote dipoles, and the methodological limitation
related to the computation of correlation dimension in
spatially extended systems.

Can the single-channel reconstruction be used for
global quantification of brain dynamics?

A second issue to discuss is whether in practical
situations, the ‘‘exact’’ value of the dimension recon-
structed from an electrode should be that of the entire
brain (global quantification), or that of the region that
is close to where recording is made (local quantifica-
tion).
Suppose that the single-channel method recon-

structs the dynamic of the whole brain. A logical
consequence is that the estimated dimension should
not depend on the position of the recording site. But
this is not what is reported in the EEG literature: in
most papers [e.g., Pritchard and Duke, 1992] the
dimension varies with the electrode; this has even led
some authors to draw dimension maps based on
interpolation to account for this effect [Pritchard and
Duke, 1992]. Such variations can be due to the two
factors mentioned previously (the additive noise from
the remote dipoles and the methodological drawbacks
related to the spatial extension of the brain). The extent
of the noise effect depends on whether the additive
noise caused by the remote dipoles is sufficient to
induce important variations of the correlation dimen-
sion across the electrodes.
To understand the influence of spatial extension, one

must bear in mind that, in spatially extended systems,
there is a degree of spatial decorrelation between the
regions [Cross and Hohenberg, 1993], i.e., signals
propagate between the different parts of the system at
a finite speed. In the brain, such phenomena occur
since the propagation speed of the action potentials
from neuron to neuron is finite; this could lead to a
decorrelation between the dimension measures of the
different electrodes. Thus, one must show how the
spatial extension is an additional cause of variations of
the dimension estimate across the electrodes.
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Can single-channel reconstruction be used for local
quantification of brain dynamics?

The alternative to global quantification is the estima-
tion of the complexity of only a region of the brain. As
previously mentioned, the brain, as a dynamical sys-
tem, can be said to be governed by an equation of the
type:

≠nX/≠tn 5 Fµ(≠n21X/≠tn21, . . . , X).

As part of the global system, a region of the brain is
fully characterized by a local state vector X1, a projec-
tion of X, such that its complement X2 describes the
state of the other parts of the system. Xmay be written

X 5 (x1 1 x2 ).

It follow that:

1. The phase-space trajectory of the region of inter-
est is no more than a projection of the phase-pace
trajectory of the global system. And thus, there is no
guarantee that the trajectory of the subsystem is
unfolded. If this trajectory intersects itself, it means
that the state of the subsystem at any given time cannot
be unambiguously deduced from the previous state;
thus the signal behaves in a noise-like manner and
there is no point in measuring its correlation dimen-
sion.
2. The variables that are external to the subsystem

act as parameters on its evolution function, such that:

≠nx1/≠tn 5 Fµ
1(≠n21X/≠tn21, . . . , X)

5 Gµ,x2
(≠n21x1/≠tn21, . . . , x1 )

( F µ
i denotes the restriction of Fµ to the subspace

related to X1). Since there are no reason why X2 should
be a constant, the parameters of the subsystem’s
evolution function Gµ,x2 are changing, and the system
is not invariant. However, the invariance of the system
is a major requirement before computing its correla-
tion dimension [Jansen, 1991].
The previous arguments suggest that the quantifica-

tion of the dimension of a subsystem is very risky.
However, in some very limited cases, it might be
possible to quantify regional complexities. It is known
that spatially extended systems can present regions
that apparently isolate themselves from the rest of the
system to adopt a coherent structure (cluster) with its
own degree of complexity [Kaneko, 1990]. Further-
more, since the couplings between neurons do not

always decrease with the distance that lies between
them, the cells of a coherent group may be sparsely
distributed throughout the cortex. Thus, two separate
situations must be studied to decide if the single-
channel is well-suited to quantify meaningful local
complexity indices: when the electrode records only
one cluster, or when it measures the sum of several
clusters’ activities.

Summary

This section is mostly based on the observation that
the potential recorded by an electrode is the sum of
two terms: the contribution of a small ‘‘magnified’’ set
of dipoles that lie under the recording site and point
toward the electrode, and the contribution of the other
remote dipoles. This observation raises five crucial
questions which will be addressed by five numerical
simulations:

Question 1: To which extent do the contributions of
remote dipoles (acting as a noise source)
fool the estimates of the dimension?

Question 2: Are the variations of dimension ob-
tained between different electrodes due
to the noise-like contribution of the
remote dipoles?

Question 3: Are these variations due to an intrinsic
inability of the single-channel recon-
struction to deal with spatially ex-
tended dynamics?

Question 4: Can the single-channel reconstruction
provide information on local complex-
ity when the cortex falls into well
separated clusters of coherent activity?

Question 5: Can the single-channel reconstruction
provide information on local complex-
ity when these clusters of coherent
activity are notwell-separated in space?

CHOICE OF SIMULATIONS
AND NUMERICAL METHODS

Generating EEG-like signals

All the simulations proceed basically the same way
and are fully explained in this section. Amodel human
head is defined by three concentric spherical shells
representing the brain, the skull, and the skin with
their respective conductivity, and a set of dipoles is
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placed inside the inner shell (the brain). The dipoles
evolve according to dynamical laws chosen to address
the five questions just listed. The potential is then
computed on several points of the scalp, and this
‘‘EEG’’ is investigated using single-channel and multi-
channel reconstruction. The correlation dimension is
computed for each channel in the first case, and for the
global recording in the second case.

Model of diffusion

The evaluation of scalp potentials generated by
cortical dipoles in realistic models of the head is a
largely unsolved problem, known as the ‘‘forward
problem’’ [Renault and Garnero, 1995]. This problem
has an exact analytic solution in the simplified case
where the head is modeled by concentric spheres of
isotropic and homogenous conductivities. This model
may present some flaws when precise forward compu-
tation is required, although it provides an excellent
basis for our study, since it takes into account spatial
diffusion of the dipoles’ fields and mirrors the fact that
transmission across successive layers does not affect
the Fourier spectrum of the signals (at least for the
frequencies of our signals [Nunez, 1981]).
We thus considered three concentric shells represent-

ing the brain (radius, 8.5 cm; conductivity, 1 (arbitrary
unit)), the skull (radius, 9.2 cm; conductivity, 0.0128),
and the skin (radius, 10 cm; conductivity, 1), and we
placed dipoles inside the inner shell. A set of positions
(the electrode sites) was chosen on the surface of the
outer shell, and the potential generated by the dipoles
on the electrodes was calculated using developments
in spherical harmonics [de Munck, 1988].
In the following, we considered Oxyz to be the

following perpendicular axis: O is the center of the
spheres, Ox is the axis pointing toward the nose, Oy
points toward the left ear, and Oz points to the vertex.
Any vector u will be referred to by its spherical
coordinates (r, u, w), r 5 \u \ , u 5 (Oz, u), and w 5
(Ox, uxy) (uxy is the projection of u on the Oxy plane
(Fig. 1).
The field computed from the dipoles represents the

potential difference, induced by the dipoles, between
the scalp and any position far from the dipoles. It
therefore mimics, to a first approximation, an EEG
with linked-ears or collar reference. Some authors [e.g.,
Stam et al., 1996] have used the mean potential over all
the electrodes as reference. As explained in appendix
B, using this reference is equivalent to studying a
modified dynamic of the dipoles, different from that of
the original.

Models of the ‘‘brain’’

Our purpose is to investigate the influence of the
spatial extension of brain dynamics on the performance
of two reconstruction techniques (single-channel and
multichannel). Recent sophisticated models of real
brain dynamics can be found in the literature [e.g.,
Nunez, 1995], but we limit ourselves here to spatially
extended, mathematically exact models. This is neces-
sary since only exactly characterized dynamics permit
us to isolate the effects of spatial extension while
providing the means to estimate dynamical indices
(such as the analytic formulation of the Lyapunov
spectra, an approximation of the correlation dimen-
sion). In consequence, we devised a series of simula-
tions to answer the five questions raised above.
Each case studied was defined by: 1) the choice of a

dynamical system whose variables were sampled over
8,192 time steps as dipole amplitudes, 2) the positions
and orientations of the dipoles, and 3) the positions of
the electrodes (this information can be found in detail
in Tables I–III).
The choice of the number of time steps (8,192 points)

allows computation of dimensions as high as 9
(<2 3 log (8,192) [Eckmann and Ruelle, 1992]); this is
also the maximum dimension that can be recon-
structed with the multichannel method in EEG experi-
ments with 20 electrodes (since the theory [Whitney,
1936] states that 2d 1 1 measures are needed to
reconstruct a trajectory of dimension d and thus 2 3
9 1 1 , 20).
The following is an overview of the different simula-

tions designed to answer the five questions mentioned
in the first section.
Question 1: To what extent does the contribution of

remote dipoles fool the dimension computation (simu-
lation TORUS)?
Two orthogonal dipoles were placed in the same

central position inside the brain, and their amplitudes
were set to evolve independently from each other in a
periodic manner. The dimension of each dipole’s
system was one, but the dimension of the sum of the
two systemswas two. Nineteen electrodes were evenly
arrayed on a quarter of a ring contained in the plane
defined by the dipoles (see Fig. 6a). In this configura-
tion, each electrode’s potential received different rela-
tive contributions of the two dipoles: the extreme
electrodes 1 and 19 were located to catch the activity of
only one of the dipoles, and we expected to find a
correct dimension of 1 from these sites; we also
expected to find a correct dimension of 2 for the
middle electrode that received an equivalent contribu-
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tion from the two dipoles. But theory is of little help as
to what one should find at the other recording sites.
Question 2: When recording a globally coupled

network of dipoles, can the variations of dimension
obtained for different electrodes be explained by the
noise-like contribution of the remote dipoles (simula-
tion LORENZ)?
Three orthogonal dipoles were placed in the same

central position. They were recorded by 19 electrodes
placed according to the 10–20 international electrode
placement system [Jasper, 1958] (see Table III). The
Lorenz system [Lorenz, 1963] was integrated using the
Runge-Kutta fourth-order method with a step of 0.01.
After the first 1,000 transients had been discarded, the
system was allowed to evolve over 5 3 8,192 time
steps, and every five steps the value of the three

variables was taken as dipole amplitudes; this proce-
dure provided a time series of 8,192 amplitudes for
each dipole. The system was chosen because of its
simplicity and because its correlation dimension was
known (2.06). If any electrode did not render the
correct dimension, it would mean that the activity of
(at least) one of the dipoles had acted as a noise on the
measure.
Question 3: Are the variations of dimension ob-

tained between different electrodes due to an intrinsic
inability of the single-channel reconstruction to deal
with spatially extended dynamics (simulation CML)?
Coupled map lattices (CML) were considered in this

case. The coupled map lattices are some of the best-
known and simplest systems to exhibit spatiotemporal
chaos [Kaneko, 1990]. These systems are discontinuous

Figure 1.
Head is modelled by three concentric spherical shells with homogenous and isotropic conductivities.
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in time and space but continuous in amplitude. They
can produce a variety of behaviors that covers most of
the known aspects of spatiotemporal chaos. Their
dynamics are determined by two parameters: the
strength of the couplings (e, see Table I) between the
elements of the network, and the degree of nonlinear-
ity (a, see table I) of the evolution function (f, see table
I) of the elements (see Fig. 2).
These parameters were set to get a state of fully

developed turbulence (e 5 0.3 and a 5 1.9). In this

case, the dimension (computed from the Lyapunov
spectrum) could roughly be approximated by d 5
0.75 3 N (where N denotes the number of elements

TABLE I. Equations used as brain models

TORUS
x(t) 5 cos (t)
y(t) 5 cos (exp (1).t)

LORENZ
ẋ(t) 5 10.(y(t) 2 x(t))
ẏ(t) 5 2x(t).z(t) 1 28.x(t) 2 y(t)
ż(t) 5 2x(t).y(t) 2 (8/3).z(t)

CML
xi(t) 5 (1 2 e).f(xi(t)) 1 (e/2).(f(xi21(t)) 1 f(xi11(t)))
i [ (1, N), ‘‘x0(t)’’ 5 xN(t) and ‘‘xN11(t)’’ 5 x1(t) (periodic
boundaries)

f(x) 5 1 2 a.x2 (logistic function)
e 5 0.3 and a 5 1.9

CLUSTER (1 and 2)
xi(t) 5 (1 2 e).f(xi(t)) 1 (e/2).(f(xi21(t)) 1 f(xi11(t)))
i [ (1, N), ‘‘x0(t)’’ 5 xN(t) and ‘‘xN11(t)’’ 5 x1(t) (periodic
boundaries)

f(x) 5 1 2 a.x2 (logistic function)
e 5 0.22 and a 5 1.65

TABLE II. Dipole positions and orientations

Dipoles Orientation Position Amplitude

TORUS
Dipole 1 u 5 90°, f 5 0° r 5 0.5, u 5 0°, f 5 0° x(t)
Dipole 2 u 5 90°, f 5 90° r 5 0.5, u 5 0°, f 5 0° y(t)

LORENZ
Dipole 1 u 5 90°, f 5 0° r 5 0.5, u 5 0°, f 5 0° x(t)
Dipole 2 u 5 90°, f 5 90° r 5 0.5, u 5 0°, f 5 0° y(t)
Dipole 3 u 5 0°, f 5 0° r 5 0.5, u 5 0°, f 5 0° z(t)

CML
Dipole (i, j) (i [ (1, Nt)) Radial to scalp r 5 0.8, u 5 ((Nt 1 1 2 i)/

Nt) . 90°, f 5 ((j 2 1)/
Np) . 360°

xNp·(i21)1j

(j [ (1, Np))
Dipole N Radial to scalp r 5 0.8, u 5 0°, f 5 0° xN(t)

CLUSTER (1 and 2)
Dipole (i, j)
(i[ (1,7))

Radial to scalp r 5 0.8, u 5 ((8 2 i)/7) . 90°,
f 5 ((j 2 1)/28) . 360°

See text

(j [ (1, 28))
Dipole 197 Radial to scalp r 5 0.8, u 5 0°, f 5 0° See text

TABLE III. Electrode positions for each
of the simulations

TORUS
Electrode Position

Electrode (i) (i [ (1, 19)) u 5 60°, f 5 (i 2 1).5°

LORENZ and CML
Electrode Position Electrode Position

Fpz u 5 90°, f 5 0° C3 u 5 45°, f 5 90°
Fp2 u 5 90°, f 5 342° T7 u 5 90°, f 5 90°
Fp1 u 5 90°, f 5 18° T6 u 5 90°, f 5 234°
F8 u 5 90°, f 5 306° P4 u 5 62°, f 5 216°
F4 u 5 62°, f 5 324° Pz u 5 45°, f 5 180°
Fz u 5 45°, f 5 0° P3 u 5 62°, f 5 144°
F3 u 5 62°, f 5 36° T5 u 5 90°, f 5 126°
F7 u 5 90°, f 5 54° O2 u 5 90°, f 5 198°
T8 u 5 90°, f 5 270° Oz u 5 90°, f 5 162°
C4 u 5 45°, f 5 270° O1 u 5 90°, f 5 180°
Cz u 5 0°, f 5 0°

CLUSTER (1 and 2)
Electrode Position

Electrode (i, j) (i [ (1, 10))
(j [ (1, 20))

u 5 ((11 2 i)/10).90°,
f 5 ((j 2 1)/20).360°

Electrode (201) u 5 0°, f 5 0°
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in the lattice). We considered nearest-neighbor cou-
plings to benefit from a vast literature in which the
correlation dimension has often been computed [Bauer
et al., 1993].
We simulated systems of increasing correlation di-

mensions by increasing the number of elements N in
the network (N 5 7, 13, 19, 25, 37, 65, 101, 197, 401, 901,
1,601, 10,001). This provided a practical way to assess
the reliability of the reconstruction techniques when
spatially extended systems of increasing complexity
are considered. For each of them, dipoles were evenly
placed on Nt circles lying in planes parallel to the
ear-nose plane (Oxy); Np dipoles were evenly posi-
tioned on each circle (see Fig. 3). An additional dipole
was placed at the vertex, so that N 5 Nt 3 Np 1 1 (the
different values of Nt and Np can be found in Table
IV). The values of the N variables of the lattices were
taken over 8,192 time steps (after discarding 1,000
transients). The electrode positions were the same as
for the Lorenz system.
Questions 4 and 5: Can the single-channel recon-

struction provide information on local complexity
when the cortex falls into clusters of coherent activity
a) separated in space (question 4) and b) mingled
(question 5) (simulations CLUSTER1 (for question 4)
and CLUSTER2 (for question 5))?
To judge from the capacity of the single-channel

method to quantify local complexity indices, we consid-
ered two systems of dipoles made from the same
coupled map lattice (CLUSTER1 and CLUSTER2). By
choosing a lower coupling strength than in the previ-
ous example (e 5 0.22) and a lower degree of nonlinear-
ity (a 5 1.65), we were able to generate spatial inhomo-
geneities within a lattice of 197 automata. Inside the
network, activities ranging from quasiperiodicity to

much higher complexity (see Fig. 4) could be observed.
To quantify a degree of complexity for each au-

tomata, we devised a ‘‘pseudoentropy’’ function called
‘‘occupation.’’ The ‘‘occupation’’ value of automata
was computed from the time series of its activity: this
time series was first normalized, so that its distribution
was included in the [21, 11] interval with a standard
deviation of 1. The interval was then divided into 1,000
boxes (Bi, (i [ [1; 1,000])), so that each box contained a
certain proportion p(Bi) of the normalized time-series
data points. The occupation function of the time series
was finally defined as

2o
Bi

p(Bi ) 3 ln (p(Bi )).

Figure 3.
Dipole positions in the CML and CLUSTER (1 and 2) simulations.
Dipoles (bars) are radial to the cortex surface (sphere), and evenly
distributed on circles.

TABLE IV. Dipole distributions for CML simulation

Value of N
Nt: number
of crowns

Np: number of
dipoles per crown

7 2 3
13 2 6
19 3 6
25 3 8
37 3 12
65 4 16
101 5 20
197 7 28
401 10 40
901 15 60

1,601 20 80
10,001 50 200

Figure 2.
Architecture of a coupled map lattice (CML) with n automata
(periodic boundaries and nearest-neighbors coupling; see Ques-
tion 3 for details).
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It follows that quasiperiodic automata had a low
‘‘occupation’’ level. Using this procedure, it was pos-
sible to define the ‘‘occupation’’ value of a dipole’s
amplitudes or of the potentials recorded by an elec-
trode.
Several radial dipoles (197) were placed on seven

crowns and their activity was measured by 201 elec-
trodes evenly distributed on the scalp’s surface. All
automata were ranked according to their ‘‘occupation’’
level. Using this ranking, we attributed the automata’s
activities to the dipoles in two different fashions to
devise two simulations. In CLUSTER1, low ‘‘occupa-
tion’’ activities were grouped in a closed region of the
cortex to form a single cluster of dipoles with quasiperi-
odic motion. In CLUSTER2, no attention was paid to

the ranking when attributing the amplitudes to the
dipoles; quasiperiodic dipoles were distributed
throughout the cortex. The ‘‘occupation’’ maps corre-
sponding to those two systems are depicted in Figure
5. These simulations allowed us to investigate the two
cases where one dynamical extended system fell into
a) small separated subsystems with homogenous com-
plexities (CLUSTER1), and b) mingled coherent clus-
ters (CLUSTER2).

Quantification of dynamics

The dynamics were reconstructed using both multi-
channel and single-channel methods.

Figure 4.
Behavior of two coupled map lattices. a: a 5 1.9, e 5 0.3, N 5 65.
b: a 5 1.65, e 5 0.22, N 5 197. Graphs represent superposition
over 25 time steps of different runs of the function x(i) where x(i) is

the amplitude of the i-th automata of the lattice. a: Chaos is
homogenous in space. b: Clusters with quasiperiodic behavior
seem to decorrelate from the rest of the network.
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Single-channel reconstruction

We applied the single-channel reconstruction by
choosing one electrode i, and building k-dimensional
vectors

Vi (t) 5 5mi(t), mi(t 2 t), . . . , mi(t 2 (k 2 1) 3 t)6,

where (mi(t) is the potential recorded at time t and site
i, and t is a number called delay; k is the embedding
dimension). The value of t was chosen using the
geometrical method of Rosenstein et al. [1994].

Multichannel reconstruction

Multichannel reconstruction consists in building
k-dimensional vectors

V(t) 5 5m1(t), m2(t), . . . , mk(t)6,

where mi(t) is the potential recorded at time t and site i,
and k is the embedding dimension.
In order to get fair estimates of the correlation

dimension, it is required that the reconstructed trajec-
tory has the same topological properties as the original

Figure 5.
‘‘Occupation’’ maps for the simulations CLUSTER1 and CLUSTER2.
a:Occupation value has been computed for each of the 197 dipoles
of the CLUSTER1 network, and then interpolated on the whole
cortex. Figure represents top view of the resulting map. A cluster
of low ‘‘occupation’’ is clearly seen. b: Corresponding map on the
scalp’s surface, calculated from the ‘‘occupations’’ of the 201

recorded electrode potentials. A diffusion of high ‘‘occupation’’
levels can be observed, although a region of low ‘‘occupation’’
remains. Same maps are represented for CLUSTER2 (c: dipoles; d:
electrodes). In CLUSTER2, clusters of low ‘‘occupation’’ level exist,
but they are not as segregated as in CLUSTER1. Therefore,
‘‘occupation’’ map d is much more homogenous than b.
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d-dimensional phase-space trajectory. In practical cases,
there must be a one-to-one correspondence between
the points of the two curves. A sufficient condition for
that is derived fromWhitney’s theorem

(k $ 2d 1 1).

This condition is sufficient but not necessary; in this
study it is possible to be a little more precise, since the
measurement functions are known: for the multichan-
nel reconstruction, the topology is preserved (in gen-
eral) when k is greater than the dimension of the
phase-space (a proof can be found in Appendix A). In
the case of the coupled map lattices, for instance, the
correlation dimension d of the systems equals 75% of
the number N of automata; Whitney’s criteria suggests
taking

k 5 2 3 0.75 3 N 1 1 5 1.5 3 N 1 1,

but k . N may be enough, as explained in Appen-
dix A.

Dimension estimation

We estimated the correlation dimension following
the classic procedure of Grassberger and Procaccia
[1983] with the correction of Theiler [1986]. We com-
puted D2 for increasing values of the embedding
dimension after singular value decomposition (SVD),
and worked in a reduced space where the variance of
each singular value was .1023; this threshold did not
affect the D2 value [Albano et al., 1988], but filtered the
noise.
In principle, the correlation dimension increases and

then reaches a saturation plateau when the orbit is
unfolded. When no saturationwas observed, we took it
as a sign that the trajectory was not unfolded and we
did not consider D2 as a reliable quantity.
For some systems, it was possible to calculate the

theoretical dimension using the Lyapunov spectrum
and the Kaplan-Yorke conjecture [Kaplan and Yorke,
1979]. For this purpose we implemented an algorithm
using QR decomposition [Eckmann and Ruelle, 1992]
to compute the Lyapunov exponents and the Lyapu-
nov dimension of the systems.We took the results with
caution, since this formula does not apply when the
sum of the Lyapunov exponents is positive; this is
never the case in natural phenomena, but it appears for
certain parameters of the CML (Coupled Map Lat-
tices). When possible, we computed this value and
used it to evaluate the performance of the reconstruc-
tion.

Testing for nonlinearity

Since dynamical methods may be biased by linearly
correlated noise [Rapp et al., 1993], the validity of the
correlation dimension is usually tested by the compari-
son between the values computed on raw data and
those computed on surrogate data with the same linear
properties (power spectrum, autocorrelation function).
In the case of single-channel reconstruction, surrogate
data are obtained by randomizing the phases in the
Fourier domain [Theiler et al., 1992]. In the case of
multichannel recording, multivariate surrogate data
were used to preserve crosscorrelation between chan-
nels [Prichard and Theiler, 1994]. The procedure thus
consisted in testing the Ho hypothesis that the correla-
tion dimension had been obtained from linearly corre-
lated noise. To do so, a set of 39 surrogate data (either
uni- or multivariate) was generated and the distance
between the raw measurement and the mean of the
surrogates was computed

(S 5 Dm/s).

If S was roughly superior to 2, the measurement
obtained for raw data differed significantly from the
data obtained with surrogate data (at a significance
level of 5%: two-tailed t-test at 2.5%). This estimate was
used to decide whether the Ho hypothesis should be
rejected. Since the underlying dynamics were pre-
sumed to be nonlinear, it was of particular interest to
see how the dimension of the measurement space
affected the estimated degree of nonlinearity. Thus, our
aim was triple. We wanted 1) to have an idea of the
reliability of the dimension indices that we measured,
2) to investigate the relative abilities of single-channel
and multichannel models to detect nonlinearities, and
3) to test the variations of the nonlinearity index with
the embedding dimension.

RESULTS

TORUS

Single-channel reconstruction

Dimension estimation. The reconstructed dimension
varied with the location of the electrode. For electrodes
1 and 19, the reconstructed dimension was 1.1 (see Fig.
6b); this value was almost correct, since only one of the
two dipoles was recorded by those electrodes. Elec-
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trodes 2, 3, 17, and 18 also led to a dimension
estimation close to 1, while they recorded both dipoles.
This underestimation of the actual estimation of the
system (2.0) is easy to explain: for each of these
electrodes, only one of the dipoles contributed in a
significant manner to the recorded potential. However,
the dimension estimation is not that of a single dipole;
a slight variation was induced by the other dipole. Two
regions of the scalp can be defined, over which elec-
trodes fail to reconstruct the two-dimensional dynamic
of the dipoles’ system. These regions have a very sharp
and well-defined border. All electrodes leading out of
them produced a fair estimation of the system’s dimen-
sion.

Nonlinearity. All recorded potentials were markedly
different from their surrogates.

Multichannel reconstruction

Dimension estimation. A saturation of the correla-
tion dimension estimate D2 was observed when
increasing the spatial embedding (Fig. 6c). This sat-
uration value (1.7) was less than the exact dimension
(2.0) of the system. This underestimation can be
explained by an insufficient number of data points
(only 8,192): the density of points was not large
enough in the reconstruction space for the recon-

Figure 6.
TORUS simulation. a: Frontal and top view of head, representing locations of the two dipoles and
the 19 electrodes. b: Single-channel correlation dimension, calculated for each of the 19 recording
sites. c: Presentation of multichannel correlation dimension D2, as a function of the embedding
dimension.
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structed trajectory to evenly fill a two-dimensional
subspace.

Nonlinearity. For spatial embeddings .1, the signal
differed significantly from its surrogates.

LORENZ

Single-channel reconstruction

Dimension estimation. A dimension estimate could
be calculated for all recording sites (see Fig. 7c).
These values showed notable variations across elec-
trodes, certainly because the sets of data points were
finite. Despite this variability and contrary to the
previous simulation, all electrodes described the dy-
namic of the whole system. This effect could clearly

be attributed to the couplings between the three
dipoles.

Nonlinearity. For all electrodes, the nonlinearity of the
signal was significant.

Multichannel reconstruction

Dimension estimation. Themultichannel reconstructed
dimension was saturated with increasing spatial
embedding (Fig. 7b). The value obtained (1.96) is close
to the actual dimension of the underlying system
(2.06).

Nonlinearity. For spatial embeddings .2, the signal
differed significantly from that of its surrogates.

Figure 7.
LORENZ simulation. a: Frontal and top view of head, representing locations of the three dipoles.
b: Presentation of multichannel correlation dimension D2, as a function of the embedding dimension.
c: Single-channel correlation dimension, calculated for each of the 21 recording sites.
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CML

Single-channel reconstruction

Dimension estimation. For all lattices and all elec-
trodes, the correlation dimension increased as a func-
tion of the embedding dimension, showing no satura-
tion. Therefore no dimension estimation could be
derived from single-channel reconstruction.

Nonlinearity. Since no dimension could be computed,
it was not possible to compute the difference with the
surrogates.

Multichannel reconstruction

Dimension estimation. A saturation of dimension was
observed for all lattices when enlarging the spatial
embedding (Fig. 8). The reconstructed dimension ap-

Figure 8.
CML simulations: multichannel reconstruction. Representation, for all lattices, of the correlation
dimension D2 (a) and the m/s value (b) as a function of the embedding dimension.
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peared to increase with the size of the lattice, as
suggested by the Lyapunov dimension’s computations
(0.753 (size of the lattice)). However, a saturation of
the reconstructed dimension with the lattice size was
observed: no dimension was .10. Dimensions of the
large lattices (.65 dipoles) were not reliable; this was
confirmed by investigation of the nonlinearity of the
signals. Note that even for the small lattices, the
correlation dimensions found using the Grassberger-
Procaccia algorithm (GPA) are low, as compared to
their Lyapunov dimensions. Similar differences have
been reported in previous studies [e.g., Bauer et al.,
1993] and were attributed to a limitation of the GPA.

Nonlinearity. For all lattices .65 dipoles, the EEG was
not distinguishable from linearly correlated noise, and

it confirmed that their low-dimension estimations
made no sense. On the contrary, the multichannel
reconstruction enabled us to show that lattices with
,37 dipoles had a low-dimensional, nonlinear, and
chaotic behavior.

CLUSTER1 and CLUSTER2

Single-channel reconstruction

Dimension estimation. For both simulations we chose
six electrodes to reconstruct the dynamic of the under-
lying system. To make this choice, we ranked all
electrodes’ potentials according to their ‘‘occupation’’
function. The first three and the last three were selected
(the last electrodes correspond to the darkest areas of

Figure 9.
Transformations leading from the brain’s phase-space trajectory to
the EGG. a: Vectors (l1, l2, . . . , lm) are computed from source-
to-scalp coefficients. b: Orthonormal basis (m1, m2, . . . , mp ) is

then constructed. c: T is rotated using the tranformation r (Tx).
d: Tx is projected down to the subspace 7e1, e2, . . . , er 8 (r 5 2,
here). The EEG is then deduced from the resulting trajectory.
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Fig. 5c, d). As for the previous simulation, none of the
electrodes led to a saturation of the correlation dimen-
sion with the embedding dimension.

Nonlinearity. Since no dimension could be computed,
it was not possible to compute the difference with the
surrogates.

Multichannel reconstruction

Dimension estimation. A saturation plateau was
reached for both CLUSTER1 and CLUSTER2 simula-
tions. For CLUSTER1, with an embedding dimension
of 25, the estimated dimension was 5.19; it was slightly
higher for CLUSTER2, at 6.08.

Nonlinearity. As for the estimation of the dimension
both signals (CLUSTER1 and CLUSTER2) significantly
differed from those of their surrogates.

DISCUSSION AND CONCLUDING REMARKS

We are now in the position of bringing some an-
swers to the question of the application of the single-
channel reconstruction to the EEG and to compare its
performance with the multichannel reconstruction.

Comparison of the two reconstruction techiques

The simulation TORUS confirmed that when a
dipole is ill-located or ill-oriented with respect to an
electrode position, its contribution to the measured
potential fools the dimension estimate on that elec-
trode. The electrodes that received a much stronger
activity from one of the dipoles than from the other did
not provide reliable value of ‘‘complexity.’’ The dimen-
sion obtained was ‘‘halfway’’ between the dimension
of the dominant system and the dimension of the
global system. Is this quantification completely mean-
ingless? The LORENZ simulation showed that this
effect could induce variations of the dimension esti-
mate, even with a globally coupled dynamical system
of dipoles. However, such variations were small and a
rough estimation of the system’s dimension could still
be obtained. This conclusion did not hold when the
system was spatially distributed, as demonstrated by
the CML simulation: the spatial extension fooled the
single-channel reconstruction, even for small lattices.
If global quantification is impossible, can the single-

channel reconstruction properly quantify local complex-
ity indices? The theoretical study suggested that this
was possible only if the brain behaved as a collection of
coherent and rather independent sets of dipoles. Since

there were no reasons why such clusters should lie in
separate parts of the brain, the CLUSTER2 simulation
was devised to investigate whether a local quantifica-
tion was possible when coherent sets were mixed. This
is not possible: no saturation plateau of the dimension
could be obtained from any electrode. The last situa-
tion was when the clusters were segregated in space,
and was addressed by CLUSTER1, and the results
showed no improvement in the saturation, as com-
pared with CLUSTER2.
In conclusion, our simulations support the conten-

tion that the single-channel reconstruction is not adapted
for a local or global quantification of the brain’s dynamics.
The multichannel technique performed better for our
simulations and seems better adapted to characterize
global spatiotemporal dynamics. However, this conclu-
sion was drawn from artificial signals; its extension to
real physiology is based on the fact that these signals
are orignated within a realistic model of the head, are
propagated as if they were real brain signals, and have
time and intensity scales within physiological ranges.
To use a realistic brain model (e.g. Babloyontz and
Destexhe, 1933) with known dynamical properties
would be, it seems, a task beyond the means available
today [Nunez, 1995]. It also follows that we cannot
concludewhether themultichannel reconstruction tech-
nique is actually optimal for brain studies, but only that
it is an improvement on single-channel.

Fooling reconstructions

It is important to notice that high-dimensional sys-
tems systematically fool the multichannel (and a for-
tiori the single-channel) methods.When the reconstruc-
tion space is too small to contain a topological
equivalent of the phase-space trajectory of the system,
our results indicate that the dimension estimate is no
longer reliable. From the surrogate data analysis, it is
clear that when the dimensionality of the system
increases (e.g., CML) for a fixed embedding dimen-
sion, the index m/s decreases, which means that the
signal becomes progressively indistinguishable from
linearly-correlated noise, as the reconstructed trajec-
tory twists onto itself. It is better unfolded when the
ratio between the phase-space orbit and the measure-
ment space dimension is close to one; but when this
ratio increases the number of crossings within the
reconstructed orbit rises and the unfolded parts get
smaller. Finally, the measurements at one time-step
carry no more information on the next measurements,
and the recorded signal acts like noise. This is sup-
ported by recent results of Politi et al. [1989], who
showed that when considering n contiguous automata
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in an N-variables coupled map lattice (similar to that
studies in this paper), the correlation dimension of the
subsystem is n (provided that n is small as compared
to N). Our study suggests that the phase-space trajec-
tory of the n-automata subsystem is no more than a
projection of the global system phase-space trajectory
and presumably contains multiple crossings; therefore,
its correlation dimension should be that of an n-
variables stochastic system, which is n.
The problem is that taken as a whole, the brain is

likely to be of too high a dimensionality to be unfolded
in a 21-measures multichannel space. A recent method,
called false nearest strands [Liebert et al., 1991] permits
us to test this claim by a systematic search of overlap
trajectories which are not detected when the embed-
ding dimension is progressively increased. A first
application to neural signals gave us some encourag-
ing results [Müller-Gerking et al., 1996].
In our opinion, a number of theoretical advances

will be needed for further analysis of the brain’s
dynamics. First, for a proper assessment of an EEG’s
nonlinear or deterministic origin, a new type of surro-
gate data that does not attempt to distinguish between
nonlinear [Theiler et al., 1992] or deterministic (‘‘DVS’’)
[Kaplan and Glass, 1992] dynamics and linear noise,
but rather between twisted nonlinear deterministic
dynamics and linear noise. Secondly, a systematic
study of the robustness of classic topological indices
should also be done; this should lead to new topologi-
cal indices that would be preserved between the
phase-space trajectory and its reconstructed image,
even when it is folded, i.e., a ‘‘rumple-proof’’ index as
it were. Third, new tools should be adapted to the
quantification of spatiotemporal chaos since the brain
is, above all, a spatially extended system.

Embedding dimension

When the embedding dimension of the reconstruc-
tion space is too small, the signal generated by the
brain’s high-dimensional dynamics cannot be distin-
guished from linear noise. In this case the computation
of the correlation dimension on such signals is mean-
ingless, and the obstacle can only be solved by increas-
ing the embedding dimension. This can be done by
considering larger sets of electrodes, but at some point,
the measurements become redundant. This stresses the
usefulness of recording, for example, the magnetic
component of brain signals (MEG) alongwith the EEG,
to get additional information. Another possibility is to
combine the single-channel and multichannel tech-
niques and to use successive measurements of several
electrodes to represent the state of the system. This

method is very promising and permits us to increase
easily the embedding dimension. However, high em-
bedding dimensions impose heavy computational costs.
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APPENDIX A

In the simulations shown in this paper, the correspon-
dence between the phase-space trajectories of the
systems, and the trajectories reconstructed from mea-
surements, is known. On the basis of this knowledge,
this appendix specifies different conditions under
which the topologies of the two trajectories are identi-
cal, in the case of multichannel reconstruction.
In other words, if we assume that the phase-space

trajectory does not intersect with itself, the one-to-one
condition is ensured if and only if the reconstructed
trajectory does not have self-crossings. This study
investigates the various configurations that lead to
such crossings. Since we consider only the multichan-
nel reconstruction, the dimension of the measurement
space equals the number of recording sites.
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Let Ep be the p-dimensional phase-space of the
system and Em them-dimensional measurement space.
In the following, (e1, e2, . . . , ep ) and (f1, f2, . . . , fm )
denote the natural basis of Ep and Em.
To any state x [ Ep, corresponds unambiguously a

set of measures y [ Em given by:

y 5 A · x

where A is the (m, p) transmission matrix of the
source-to-scalp coefficients. It is easily computed from
the positions and orientations of the dipoles and the
electrode locations [de Munck, 1988]. Let’s denote
(l1, l2, . . . , lm) the m rows ofA, (li [R p). These m
vectors define an r-dimensional subspace of Rp

(r , inf (m, p)) from which it is possible to build an
orthonormal basis (µ1, µ2, . . . , µr ), that is part of an
orthonormal basis of Rp: (µ1, µ2, . . . , µp ). Let’s then
denoteH the (m, p) matrix, such that

lj 5 o
i51=r

Hljml

for j [ (1, m) andR the (p, p) orthogonal matrix, such
that

ei 5 o
k51=p

Rkiµk,

for i [ (1, p).
Any state-space vector can be written:

x 5 o
i51=p

xiei5 o
i51=p

xi1 o
k51=p

Rkiµk25 o
k51=p

1 o
i51=p

xiRki2µk
since the corresponding measurements vector is given
by:

y 5 A · x 5 o
j51=m

(tLj · x)fj 5 o
j51=m

1 o
l51=r

Hlj
t ml · x2fj

y 5 o
j51=m

1 o
l51=r

Hlj
t µl · 1 o

k51=p
1 o
i51=p

xiRki2µk22fj
5 o

j51=m
1 o
l51=r

1 o
k51=p

1 o
i51=p

Hlj
t µlxiRkiµk222fj

and since (µ1, µ2, . . . , µp ) is orthonormal:

yj 5 o
i51=p

1 o
k51=p

HkjRki2xi,

for all j [ (1, m) and y 5 tH ·R · x.

This formula gives us precise information about the
geometric transformation leading from x to y, and
thus, from the phase-space trajectory (let’s denote it T)
to the reconstructed trajectory (T8). SinceR is orthogo-
nal, it corresponds to a rotation r in the phase-space,
and thus:

1. T is rotated (Fig. 9) using the transformation r,
that brings mj on ej for all j [ (1, p).

2. The resulting curve r( T ) is then projected down
to the subspace 7e1, e2, . . . , er 8 (let’s denote this
projection p).

3. If t denotes the transformation that transforms mj

on lj for all j [ (1, r), then the projection of T8 on
the i-th axis of Em is given by the projection of
(pOr)( T ) on t(ej ).

Although complex in appearance, this procedure
leads to a straightforward conclusion concerning the
relations between the topological properties of T
and T8.

Lemma

If thediffusionmatrixA isknownandthetransforma-
tions r, p, and t have been constructed using families
of vectors (l1, l2, . . . , lm ) and (m1, m2, . . . , mp ), then in
the case of the multichannel reconstruction, two points
M and P of the phase-space trajectory T have the same
image on the reconstructed trajectory T8, if and only if
the following proposition is true:

r(MP ) [ (7e1, . . . , er 8' (orMP [ 7µr11, . . . , µp 8).

Notice that the single-channel case can be easily
deduced, for in this case two segments of T,
(M1, M2, . . . , M m) and (P1, P2, . . . , Pm), will result
in the same point on T8, if the following proposition is
true: each of the projections of the vectors r (MiPi ) is
either zero, or perpendicular to t(ea ) where a denotes
the recording channel.
This lemma makes it possible to derive a sufficient

condition that ensures the topological identity be-
tween the phase-space trajectory and the reconstructed
one, it is presented in the following corollary.

Corollary

Assuming the number of recording sites exceeds the
size of the phase-space (i.e., m . p), and assuming that
the diffusion matrix A is injective (a signal can be
recorded on the scalp if at least one of the dipoles has
an amplitude different from zero), then r 5 p,
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7e1, . . . , er 8' 5 506. Thus two points of T cannot have
the same image on T8, and it follows that the correspon-
dence between T and T8 is one to one.

APPENDIX B

In this appendix, we study the effect of average
reference on the reconstruction of dynamics.
With the same notations as in the previous appen-

dix, we compute from the activities x [ Ep of the
dipoles, the set of scalp potentials y [ Em given by:

y 5 A · x.

If we subtract the average reference, we obtain a set of
data

z 5 y 2 (1/n) · (y · e)e,

where n is the size of y and e5 (1, 1, 1, . . . , 1, 1) of size
n. z is the orthogonal projection P (i.e., that z · e 5 0) of
y onto the (n 2 1)-dimensional space 7e8': z 5 P · y 5
P ·A · x.
In the following paragraph, we show that z can also

be written z 5 A · Q · x, where Q is a projection. Since
the projection acts now on the original dipole set x, it
follows that average reference induces a modified di-
pole source.
The state-space Ep can be written as the orthogonal

sum of two subspaces:

Ep 5 Ker(A)
'
% p,

and further it can be shown that:

p 5 1p > Ker(P · A)2 % 1p > Ker(P · A 2 A)2.
Let’s briefly demonstrate this point.

1. The first step is to show that the intersection of
the two subspaces

1p > Ker(P · A)2 > 1p > Ker(P · A 2 A)2
is zero. If u [ (P > Ker(P · A)) > (P > Ker(P · A 2
A)), then P ·A · u 5 0, and P ·A · u 5 A · u; so

A · u 5 0 and u [ 1p > Ker(A)2 5 506,

so u 5 0. Thus

1p > Ker(P · A)2 > 1p > Ker(P · A 2 A)2 5 506.

2. The second step is to show that every element of
P can be written as the sum of two vectors, each
belonging to one of the subspaces (P > Ker(P · A)) and
(P > Ker(P · A 2 A)). If u [ P, then A · ue can be
written

A · u 5 g 1 l · e,

where l is a scalar and g [ 7e8'. Let k be a vector
such that

A · k 5 e 1then k [ 1p > Ker(P · A)22,

u can always be written:

u 5 l · k 1 (u 2 l · k). Then,

P · A · (u 2 l · k) 5 P · (A · u 2 le)

5 P · g 5 g 5 A · (u 2 l · k); so

(u 2 l · k) [ 1p > Ker(P · A 2 A)2 and thus

u [ 1p > Ker(P · A)2
% 1p > Ker(P · P 2 A)2. Thus

p , 1p > Ker(P · A)2
% 1p > Ker(P · A 2 A)2 , p.

Now letQ be the projection onto

1p > Ker(P · A 2 A)2.
Since

Ep 5 Ker(A) % 1p > Ker(P · A)2
% 1p > Ker(P · A 2 A)2,
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any vector u of Ep can be written

u 5 ua 1 ub 1 uc,

with

ua [ Ker(A), ub [ 1p > Ker(P · A)2,
and

uc [ 1p > Ker(P · A 2 A)2(uc 5 Q · u).

Then,

P · A · u 5 P · A · (ua ) 1 P · A · (ub ) 1 P · A · (uc ))

5 P(o) 1 o 1 uc 5 uc.

Since

uc 5 Q · u,

then it is true that

P · A · u 5 A · Q · u.

It follow that, as announced, z can also be written

z 5 A · Q · x,

whereQ is a projection.Q is the potential generated by
the set of dipoles when their activity is x8 5 Q · x, a
modified dipole source instead of the original one.
For this reason, the average reference should be used

with care, since there may be important differences
between x8 and x and between their dynamics.
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