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Abstract

The development of the mathematics of dynamical systems now offers a
rigourous framework to deal with complex phenomenon evolving with time.
The possible euristic value of applying dynamical concepts to the field of
psychopathology is investigated here. Three levels of applications found
in the literature are reviewed: metaphoric, qualitative and quantitative.
Psychopathology seems indeed a field where the concepts of dynamics can
offer important tools, both theoretical and empirical. Nevetheless, specific
problems should be emphasized to obtain a more profound insight in normal
and pathological mental phenomenon.
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1 Introduction

The science of the mind is usually fond of importing new concepts from
other disciplines. In the last thirty years, the development of the scientific
interest in the behavior of complex systems has led to the emergence of
notions such as chaos, attractors, sensitivity to initial conditions, etc. and
to related numerical methods. The goal of this article is to estimate, on the
basis of a literature review1, the possible heuristic value, for psychopathology
of the tools developed within the mathematical and physical framework of
dynamical systems theory.

1.1 Explanation levels in psychopathology

Since mental diseases have been studied from biological to social level, psy-
chopathology stands at the border between natural and human sciences.
From the point of view of natural sciences, mental troubles are to be re-
duced to biological phenomena such as Korsakov syndrome or dementia in
Alzheimer’s disease. For the human sciences, mental disease are thought to
be due to “mind” troubles or to be related to social factors such as rela-
tionships with close relatives (i.e. family) or to more general factors such as
social frustrations. Nevertheless, the search for a linear causality from one
level to another (from biology to social or backwards) has obviously failed.
For example, no biological indicators are available yet to unambiguously
decide for a specific mental trouble.

Such problems have led to emphasize the need for a multidisciplinary in-
vestigation of the bio-psycho-social nature of mental troubles (Engel, 1980;
Freedman, 1995). These approaches usually explain the whole disease as the
sum of each individual factor: biological, social and psychological. Never-
theless, a complex phenomenon, such as a mental disease, can hardly fit into
a linear model and a co-determination of levels seems more probable. It is
thus necessary to find tools to deal with circular causality and interactions
between levels.

1.2 How dynamic are mental diseases?

The hallmark of mental troubles is the compulsive repetition of actions,
fantasies or patterns of discourse which can be considered as successive con-
scious or unconscious acts. Mental diseases have an onset, evolve and can
finally disappear. Moreover, specific temporal patterns appear in mental dis-
eases whatever the observation scale: from milliseconds (response to stimuli,
biochemical modulation or neuronal electrical activity) through minutes or

1The literature was scanned using two data bases: “pubmed” (url:) and “PsychInfo”
(url:). Key words were: chaos, nonlinear dynamics, catastrophe theory, psychopathology,
psychiatry, depression, schizophrenia, personality disorders, mood disorders, addiction.
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hours (clinical interview) to years (time course of recurrence) or generations.
During the acute period, changes in biological and behavioral rhythms are
observed and during the whole life, specific alternations between disease and
remission are also observed (Keller et al., 1986). The number of recurrences
increases as a function of previous episodes and the illness patterns become
more rhythmic with cycle acceleration finally resulting in rapid cycling or
ultradian mood patterns (Kramlinger and Post, 1996; Huber et al., 2001a).

As an explanation for the occurrence and evolution of specific patholog-
ical patterns, several models have underlined the importance of initial con-
ditions. In the psychoanalytic tradition, or even in cognitive psychotherapy,
the possible influence of interactions and learning in infancy are assumed
as important vulnerability factors for the development of mental disorders.
Nevertheless, a longitudinal study, of more than one hundred subjects, from
infancy to early adulthood, showed that the onset of behavioral disorder was
highly variable (from 2 to 16 years). In most of the cases appearing during
the adolescence, data revealed neither any prodromal or pathogenic symp-
toms nor excessive stress in earlier period (Thomas and Chess, 1984). The
structural hypothesis of universal development stages and of early determin-
ism of mental disorders is thus severely challenged. In fact, the evolution
of mental troubles are highly contextualized and related to supports or con-
straints continuously acting on individuals.

1.3 From dynamical diseases to psychopathology

The application of dynamical systems theory to the modeling of physiologi-
cal systems led to the definition of “dynamical diseases” (Mackey and Glass,
1977; May, 1978; Mackey and Milton, 1987). The hallmark of a dynamical
disease is a sudden qualitative change in the temporal pattern of physiolog-
ical variables (Bélair et al., 1995). From a dynamical point of view, such
changes are related to modifications in the control parameters that lead
to abnormal dynamics. This kind of dynamical changes have been clearly
observed in neurological diseases (Milton et al., 1989).

In a review of 32 neurological and psychiatric diseases, two main char-
acteristics have been considered as landmarks for a “dynamical disease”
(Milton and Black, 1995): the recurrence of symptoms (10/32) and the os-
cillations appearing in the functioning of nervous systems (22/32). Within
these fields, epilepsy and affective disorders are the best candidates for the
application of the “dynamical disease” concept.

Such a framework can be generalized so that psychopathology may fit
into the framework of “dynamical disease”. As in the case of physiological
functioning, it may be hypothesized that a mental structure is an emer-
gent property associated to an underlying dynamics. Clinical signs and
symptoms, observed in psychiatry, would thus correspond to qualitative
dynamical changes related to modifications in control parameters (Globus
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and Arpaia, 1994; Moran, 1991; Schmid, 1991). Within such a conception,
mental disorders and changes in mental states (such as changes following
psychotherapeutic activity) in emotional states or in developmental stages
may be influenced by parameters acting at several levels from physiologi-
cal to social one. The presence of a symptom would thus emphasize the
stability of the system in a specific parameter domain and thus be seen as
an attractor. The articulation between levels of observation would thus be
defined on the basis of changes in dynamical observables.

We describe the psychopathological literature, dealing with time evo-
lution of psychopathological phenomema, using mathematical and physical
concepts from dynamical systems theory. We will distinguish three levels
of application: firstly, the study of the dynamics of complex systems can
offer a set of metaphors for the description of mental phenomena, secondly
qualitative insights of the behavior of systems can be obtained with the
study of various models (such as neural networks or catastrophe models)
and then quantitative characteristics of dynamical behaviors can be infered
using nonlinear modeling and time series analysis. At last, criticisms and in-
terests are given in order to favor a rigorous development of the application
of dynamical concepts to psychopathology.

2 Metaphors

On the basis of the similarities between general properties of nonlinear dy-
namical systems and temporal phenomena observed in mental life, metaphor-
ical associations between concepts have been undertaken. We distinguish
different attempts using dynamical system paradigm as a metaphor in psy-
chopathology. It has been proposed to understand the Self as an emergent
property issued from dynamics of multiple iterations of brain processes, per-
ceptual and social experience. Moreover, psychotherapists have used terms
from chaos theory as an analogy for phenomena emerging during the course
of psychotherapies (psychoanalytical and systemic).

2.1 The ’Self’ as a dynamical system

Object-relation psychoanalysts (Mahler, 1968; Klein, 1948) have underlined
how the extended system of personal relationship influence personality de-
velopment throughout life. Intersubjectivity theory (Stolorow et al., 1994)
examines how the interplay between the subjective worlds of the patients
and the analyst gather into a new system. These two points of view led to
conceptualize the ’Self’ as adaptive and multi-stable state of consciousness
about oneself and the ’world’. Thus, the ’Self’ is able to adopt successively a
set of discrete states evolving on the basis of contextual influences from mi-
croscopic level of physiology (Freeman, 1990) through macroscopic levels of
psychology, social or cultural organization. This psychic structure could thus
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be conceptualized as an open, complex, dynamical system (Marks-Tarlow,
1999). Healthy selves self-organize and evolve to the edge of chaos, where
they are capable of flexible reorganization in response to unpredictable social
an environmental contingencies (Goldstein, 1997).

In these conditions, the ’Self’ finds its origin in the continuous interac-
tions between biological roots and the history of the subject. ’Self’ is thus
linked to preconscious and preverbal roots. Nevertheless, language is nec-
essary to make the ’Self’ conscious (Schwalbe, 1991). Consciousness, as a
recursive process operating upon internal objects and external influences,
does not precede acts but emerges out of it. An iterative loop of perception-
action-reflection may lead to the emergence of a new level of complexity: a
consciousness of consciousness.

2.2 Dynamical metaphors for the psychotherapeutic processes

The course of psychotherapy is not a linear progression towards a new health-
ier mental state. Psychotherapy is a multidimensional process involving bi-
ological factors, psychological and social experiences leading the subjects
towards a new state (Bütz, 1993). The course towards this change is an
enchainment of stable and instable periods that could be described as a non
linear dynamic phenomenon (Langs, 1986; Bütz, 1993; VanEenwyk, 1991;
Spruiell, 1993; Levinson, 1994). Analysts perceive patients as different along
the psychotherapy course; this change can be conceptualized as a qualita-
tive shift in patients’ state i.e. a bifurcation in the dynamical systems theory
(Moran, 1991; Priel and Schreiber, 1994; Verhuslt, 1999).

Moreover, the process of interpretation during a psychotherapy can make
the psychological system more sensitive to new perturbations (Bütz, 1993;
Verhuslt, 1999). The psychotherapist’s function, especially through his in-
terventions, is to stabilize or destabilize patients’ mental processes and their
way of thinking or telling their narrative. The therapeutical situation can
thus be viewed as a dynamical process where a common system is co-created
in the interaction between therapist and patient (Elkäım, 1990; Lonie, 1991).

The therapeutic frame (regular appointments and stable environment) is
designed to allow the emergence of a sampling of the patient’s inner world.
This phenomenon has been interpreted through the concept of self-similarity.
At any level of examination: within the whole case history, during a single
session or a single dream, one can observe the patient own ”signature”,
a recognizable pattern of his/her mental life (Lonie, 1991; Moran, 1991).
Certain aspects of psychoanalytical situation such as unconscious fantasies
have also been viewed as a form of strange attractor (Moran, 1991; Quinodoz,
1997; Galatzer-Levy, 1995) or the repetition of some themes in the course
of the therapy as a limit cycle (Lonie, 1991).

The sensitivity to initial conditions and the unpredictability of complex
phenomena is an important analogy between nonlinear dynamical systems
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and psychotherapeutic situations (Bütz, 1993; Lonie, 1991). Even if the
individual’s mental life and behaviour is powerfully affected and determined
by precocious experiences, repetitions are not strictly identical and some
small elements could make the evolution unpredictable. The evocation of the
history of the patient or the focalization on certain events or feelings can have
unpredictable effects. Therapy can thus be considered as an extended series
of well-timed perturbations which serve gradually to disrupt the strange
attractors characteristic of the patient’s fantasy-behavioral coupling (Moran,
1991).

Systemic therapy has used the concepts from the general systems theory
for a long time. The models from nonlinear dynamical systems are thus a
kind of “natural” extension for this practice (Koopmans, 1998; Miller et al.,
2001). The time evolution of a family system goes through ordered and
disordered phases (Brabender, 2000) where the symptom signs the inability
of the group to overcome crisis. Family therapist can be considered as a
catalytic factor for changes in the family functioning leading the emergence
of a new state (Ricci and Selvini-Palazzoli, 1984; Elkäım, 1990).

2.3 Conclusion

The properties of nonlinear dynamical systems are obviously appealing for
the description of complex mental phenomena. In fact, the metaphorical
use of dynamical concepts might be a first movement to get away from
strictly medical models based on a linear explanation of the onset and the
evolution of mental disorders. In that sense, nonlinear dynamical analogies
can offer new tools to deal with complex situations encountered in the clinical
practice.

Nevertheless, several caveats need to be avoided. The distance be-
tween mathematical concepts and psychological (or psychoanalytical) theo-
ries needs to be questioned precisely (Denman, 1994; Kincanon and Powel,
1995). Does mathematics throw a light on psychology or does it darken it?
What is exactly the nature of the explanation expected from such analogies
(Gardner, 1994)? It is important to avoid errors due to superficial compre-
hension of precise scientific concepts (Sokal and Bricmont, 1999).

Finally, such analogies can be used as a starting point for a scientific
enquiry into mental phenomena and should be tested on qualitative modeling
or empirical quantitative studies.

3 Qualitative

Qualitative models are related to the introduction of explicit constraints on
the definition of a specific dynamical system supposed to model the em-
pirical system taken into account. Two types of dynamical systems have
been taken as models in psychopathology: first, gradient systems related to
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“catastrophe theory” have been considered, then the development of neural
network introduced another kind of modeling.

3.1 Gradient systems

The state of a system at time t can be described by a set of variables ψ(t) =
{ψi(t)} (ψi are thus called state variables) and that a set of parameters,
denoted cα (1 ≤ α ≤ k), controls the qualitative properties of the system’s
time evolution (cα are thus called control parameters). The dynamics of the
system is said to be described by a dynamical system when2:

dψ

dt
= f (ψ, cα, t) (1)

with f = {fi}. The general study of systems represented by equation (1) is a
very difficult problem. It can be made more tractable when two assumptions
are added (Gilmore, 1981):

1. If the functions fi are considered as independent of time, the dynam-
ical system is now an autonomous dynamical system and powerful
statements can be made about such systems which depend on a small
number of parameters (k ≤ 4).

2. It can be noticed that in equation (1) the functions fi look as the
components of a force. With the assumption, inspired from mechanics,
that all the functions fi can be derived as the negative gradient (with
respect to the ψi) of some potential function V (ψj , cα):

fi = −∂V (ψj , cα)
∂ψi

the resulting system:

dψi

dt
+
∂V (ψj , cα)

∂ψi
= 0 (2)

is a gradient system (ψ̇ = −∇ψV ). This kind of system is much more
tractable than the other systems described previously.

Dynamical systems theory deals with the solutions ψ1(t), ψ2(t), . . . ,
ψn(t) of equation (1) which define trajectories (i.e. time evolution) of the
system. Of particular interest are the equilibria (dψi/dt = 0) of dynamical
and gradient systems. They define the states where the system can settle
in, either, a stable or unstable manner.

2For a more general statement about the time evolution of a system and the hypothesis
that lead to the somehow reduced dynamical system description, see Gilmore (1981, p. 3–
5).
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Elementary catastrophe theory is the study of how the equilibria ψe
j (cα)

of V (ψj , cα) change as the control parameters cα change for gradient sys-
tems. In that sense, elementary catastrophe theory is a quasi-static theory
since it is only concerned by the equilibrium points of a dynamics and how
they change when the control parameters are varied (Thom, 1977a; Arnol’d,
1992).

These models have been mainly used to model the emergence of discon-
tinuous behaviors out of continuous parameter variations. The application
of catastrophe theory to concrete phenomenon can be divided into the ’meta-
physical’ way and the ’physical’ way (Thom, 1977b).

The metaphysical way considers the generality of elementary catastro-
phe as justifying the use of archetype situations to describe phenomenon
where the nature of the dynamical systems that produce them is un-
known. This method lead to qualitative models that can be used
analogically with real situations.

The dichotomy between anorexia and bulimia is an archetypic example
(Zeeman, 1977). The starting point of the model was the observation
that an anorexic loses access to normal attitudes toward food and that
many sufferers develop bulimic phase. During theses cycles attitudes
toward food switch catastrophically from one extreme to the other,
and they never take on normal intermediate values. These are the
hallmarks of the cusp catastrophe which was used to model this be-
havioral trouble. A more sophisticated model added the sleep/wake
cycle to the preceding cusp model and thus develop a geometrical non-
trivial double cusp model (Callahan, 1982).

Catastrophe theory has also been used in a set of other models in
clinical psychology (Weiner, 1977; Galatzer-Levy, 1978; Scott, 1985).
Catastrophe model based on the attention focus has been proposed to
deal with manic/depressive illness (Johnson, 1986). Emotional numb-
ing associated with post-traumatic stress disorder (Glover, 1992) and
other emotional responses (Lanza, 1999) have also been modeled using
cusp catastrophe such as the relationship between alcohol intoxication
and suicidal behavior (Hufford, 2001). In the case of schizophrenia,
catastrophe models provided ways in which neurochemical and envi-
ronmental influences could interact so that very small changes in either
variable may produce the rapid changes in intensity of psychosis (Mac-
Culloch and Waddington, 1979) The dopaminergic hypothesis has also
been investigated using this framework (King et al., 1981).

From a more general standpoint, the possible heuristic value of Thom’s
dynamical theory to the Freudian metapsychology has been evaluated
(Porte, 1994). On the basis of a careful parallel between both authors,
it can be estimated that positivists caveats of Freud’s theory find a
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natural solution in modern dynamical theories.

The physical way applies when the dynamics is indeed described by a
gradient system. It is the case for example in physical systems for
phase transitions in thermodynamics or caustics in optics (Poston and
Stewart, 1978; Gilmore, 1981).

An exemplary modeling of alcohol consumption follows such a per-
spective (an der Heiden et al., 1998). The model is based on the
mathematical expressions relating general phenomenon supposed to
drive alcohol consumption (denoted A). The authors reported several
stage of a qualitative model which final expression is:

dA

dt
= F − r.A+ σ

A2

1 +A2
(3)

where F (frustration) is considered as a constant force driving alcohol
consumption (such as life conditions, habits, social environment...),
r is related to the disagreement of alcohol intake (illness, social val-
ues...) and the last term with parameter σ is a nonlinear auto-catalytic
model. The study of the equilibria of this model leads to describe the
phenomenology of drinkers typology and a cusp catastrophe was found
in the description of the bifurcations. The discussion of the model show
how control parameters can be varied to change the drinking behavior
and thus may be of interest in the clinical practice. Moreover, This
study demonstrates that the interaction of very few “mechanisms” re-
sults in a large manifold of different kinds of behavior.

3.2 Neural networks

The first use of neural networks has been devoted to provide models of brain
functioning. Two major class of models can be differentiated: parallel dis-
tributed processing (PDP) models (McClelland et al., 1986a,b) and attractor
neural network (ANN) models (Hopfield, 1982; Amit, 1989). We will only
review here some models using ANN to deal with psychiatric syndromes
(other models can be found in Rialle and Stip (1994), Aakerlund and Hem-
mingsen (1998) or Huberman (1987)). Neural networks have also been used
as models of symptoms dynamics.

Attractor neural network models are based on systems such as (Hopfield,
1982):

Si(t+ 1) = F (
∑

j

wijSj(t)− θi) (4)

where Si(t) is the state of “neuron”i at time t, wij is the “synaptic weight”
between neurons i and j and θi is the threshold. Such system has compu-
tational abilities since memories are stored as attractors of its dynamics; so
that, as an content-addressable memory:
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• memories (or patterns) are retrieved according to similarity to the
input

• generalizations based on different memories are possible

• memories are distributed across all neurons, and are not localized

An alterations of these functions, related to changes in the control parame-
ters, may thus simulate cognitive impairments in some mental disorders.

3.2.1 Models of syndromes

Manic-depressive illness An interpretation of manic behavior has been
proposed on the basis of a classical Hopfield network (Hoffman, 1987). The
increase of noise (related to the steepness of the slope of the transition
function) causes an increase of transitions between attractors. This behavior
of the network has thus been related to the transitions between thoughts in
manic patients.

Another model consider depression-like and manic-like behavior as at-
tractors of a dynamical system (Globus and Arpaia, 1994). The same for-
malism is thus used at a higher level where attractors represent the overall
behavior. It must be emphasized, that this model is clearly similar to a
catastrophe model.

Schizophrenia On the basis of ANN, schizophrenia has been interpreted
as the result of the overloading of the network memorization abilities (Hoff-
man, 1987). In fact, overloading causes the creation of spurious attractors
from which the network cannot escape. Delirium has been associated with
such a process. Troubles in cortical pruning, during development, lead to
a decrease of cortical synaptic contacts and would thus decrease the mem-
orization ability of the cortical network in schizophrenic patients (Hoffman
and Dobscha, 1989; Hoffman and McGlashan, 1994, 2001). The presence
of spurious attractors could be the analog of the three types of symptoms:
strange outputs, independent submodules, and independence of modules
functioning in front of inputs. This model has been discussed in David
(1994). A network based on spreading activation was also proposed to model
how an initial paranoid state becomes crystallized into a fixed delusion in
schizophrenia (Vinogradov et al., 1992).

The defect of generalization and/or of taking into account the context in
schizophrenic patients has been related to dysregulation of dopamine trans-
mission (Cohen and Servan-Schreiber, 1992). Such changes in the interac-
tions between cortical and sub-cortical structures could reduce the size of
attractors in patients when compared to controls (Tassin, 1996). Neverthe-
less, the observed increased variability in behavior among schizophrenics,
could also been related to chaotic dynamics in the central dopaminergic
neuronal system (King et al., 1984).
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3.2.2 Time-course of affective disorders

Episodes of affective disorders have been analogically compared to firing in
neuronal networks (Huber et al., 2000b,a, 1999). A mathematical model
based on a nonlinear dynamical system influenced by noise has been pro-
posed:

τx
dx

dt
= −x−

∑

i

aν
iwi(x− xi) + S + gw (5)

where τx is a relaxation time constant, aν
i represents the activation states

(ν = 1 or ν = 2), i ranges over four different states, wi are coupling con-
stants and xi describes different activation levels. S represents the control
parameter (corresponding to an ongoing disease process), and gw represents
a Gaussian white noise to take into account environmental or endogenous
stochastic influences.

The dynamic behavior shows that, in the course of the illness, noise
might amplify sub-clinical vulnerabilities into disease onset and could in-
duce transitions to rapid-changing mood pattern. In this model, based on
cooperative effects between deterministic and random dynamics, noise in-
creases the spectrum of dynamic behaviors.

Furthers modifications of this model, based on a feedback mechanism for
episode sensitization, permits to strongly support the importance of episode
sensitization as fundamental mechanism for the disease’s progression in af-
fective disorders (Huber et al., 2001a,b).

3.3 Conclusion

The introduction of specific kind of dynamical systems as models in psy-
chopathology provide a global framework for the description of changes in
psychopathology. Based on the generality of the formalism it is thus possible
to describe various levels of observations within the same model. Neverthe-
less, even if these models introduce more constraints than in analogical use
of dynamical concepts, it is not always clear whereas they constitute real
model or mere elaborated metaphors.

These models thus need development towards empirical empirical tests.
The introduction of quantitative methods may fill the gap between qualita-
tive modeling and empirically observed dynamics.

4 Quantitative

Empirical studies quantifying the characteristics of observed dynamics are
needed to estimate the scientific and clinical value of dynamical paradigm
in psychopathology.
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4.1 Data fitting

The presence of a “catastrophe” can be infered either on the basis of obser-
vation or from the study of a model. Empiricists would prefer that “catas-
trophe” could be proved and measured on the basis of experimental data.

The theoretical analysis of the behavior of systems in the neighborhood
of singularities allow one to define critical phenomena that should be ob-
served for a catastrophe model to apply. These phenomena have been called
catastrophe flags (Gilmore, 1981). The first ones (modality, inaccessibil-
ity, sudden jump) have usually been taken as qualitative indices for the
’metaphysical’ application of catastrophe theory. The other one (diver-
gence, hysteresis, divergence of linear response, critical slowing down and
mode softening, anomalous variance) are usually more difficult to observe
or to describe. Such ’flags’ have been infered in development stages (van der
Maas and Molenaar, 1992).

Three quantitative approaches to the problem of testing the fit of be-
havioral data to catastrophe models have been developed. The first has
taken stochastic difference equations as a basis and uses the methods of mo-
ment to estimate model parameters (Cobb and Watson, 1980). The second
uses polytope search curve-fitting procedure to obtain maximum likelihood
estimates of the model from the observed data (Oliva et al., 1987; Lange
et al., 2001). The third approach is in the form of least-square regression
(Guastello, 1982, 1987). This last method has been discussed in Alexander
et al. (1992) and Guastello (1992).

The analysis of a cusp catastrophe used to model adolescent alcohol use
have shown that dispositions should be viewed as the normal parameter
and situation pressure as the splitting parameter of the cusp (Clair, 1998).
Statistical analysis of empirical data using polynomial regression have shown
that the cusp model better fit the data than the alternative linear models
(Clair, 1998). Such procedure have also been used in the test of anxiety
theory in the context of sport performance (Hardy, 1996).

4.2 Time series analysis

It is out of the scope of this review to develop a complete methodological
overview. For complete references, see Kantz and Schreiber (1997); Grass-
berger et al. (1991); Abarbanel et al. (1993); Ott et al. (1994); Badii and
Politi (1997).

Time series analysis deals with the quantification of the ’complexity’ in
the sequence of observed data. From the dynamical point of view, the first
step is the reconstruction of the trajectory of the system within its phase
space, then geometrical indices (such as dimensions) or dynamical indices
(such as entropies) are computed. It has been shown that these indices
should be statistically validated using surrogate data methods (for a review
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see: Schreiber and Schmitz, 2000). When data are discrete (or when the
continuous dynamical system is ’properly’ discretized), the characterization
of the dynamics uses symbolic methods (Badii and Politi, 1997).

4.2.1 Brain dynamics

The central nervous system can be considered as a complex system which
can be modeled within the dynamical system theory. For example, nonlinear
dynamics provides new methods for the investigation of EEG signals.

Depression Studies of brain dynamics in depression have mainly shown
a decrease of the first Lyapunov exponent for sleep stage IV in depressed pa-
tients when compared either to controls (Roschke et al., 1995b) or schizophrenic
patients (Roschke et al., 1994). Unipolar depression is characterized by spe-
cific brain dynamical patterns of low complexity which evolve during phar-
macological treatments (Nandrino et al., 1994; Pezard et al., 1996). Never-
theless, the recovery of a healthy brain dynamics is dependent upon clinical
history: in the case of patients with recurrent episodes, even after a clinical
improvement similar to that of first episode patients, brain dynamics did not
recover the complexity level of control subjects. Changes in brain dynamics
have been correlated with clinical evaluation of depressive mood in three
depressed patients (Thomasson et al., 2000). These results were confirmed
in the case of a 48-hour rapid cycling patient (Thomasson et al., 2002).

Schizophrenia Brain dynamics was studied in schizophrenic patients both
during sleep and awake states. REM sleep in schizophrenic patients is char-
acterized by a lower Lyapunov exponent (Roschke et al., 1995a). This altered
brain dynamics could correspond to an impairment of the safety function of
dreams (Keshavan et al., 1990). In addition, it has been shown that EEG’s
dimensionality was reduced during sleep stages and REM in schizophrenic
patients (Roschke and Aldenhoff, 1993).

During awake states, nonlinearity and correlation dimension computed
with spatial embedding of EEG data are lower in schizophrenia (Lee et al.,
2001b; Jeong et al., 1998). Moreover, Lyapunov exponents also decrease
in schizophrenia (Kim et al., 2000). When time embedding is used, spa-
tial heterogeneities are demonstrated by correlation dimension (Lee et al.,
2001a).

Finally, using mutual cross prediction (Le Van Quyen et al., 1998), it
has been shown that the driving system was shifted to the frontal channel
after 4-week trial with clozapine in schizophrenia (Kang et al., 2001).

Other physiological indices Time series of heart period and respiratory
rhythms obtained from normal controls and patients with panic disorder
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were analyzed (Yeragani et al., 2000, 2002). Results showed that approx-
imate entropy and largest Lyapunov exponents were higher in patients in
normal breathing condition (Yeragani et al., 2002).

4.2.2 Symptoms dynamics and therapies

Mood disorders The alternation between depressed and manic episodes
in bipolar troubles constitutes an important illustration of symptoms dy-
namics (e.g. Wehr and Goodwin, 1979; Wehr et al., 1982). In order to
assess whether the time evolution of mood modifications in bipolar trouble
are related to stochastic or deterministic dynamics, daily scores to analogical
mood scales have been recorded from one to two years and a half (Gottschalk
et al., 1995). Linear (autocorrelation function and power spectra) and non-
linear (phase space embedding, correlation dimension, recurrence plots and
surrogate data testing) were performed on the data obtained from seven
rapid-cyclers and twenty-eight control subjects. Six out of the seven pa-
tients depicted convergent estimates of the correlation dimension whereas
none of the controls did. Together with the complex power spectra this re-
sult indicates that mood in patients with bipolar disorder is not really cyclic
contrary to the current opinion. Nonetheless, self-rated mood in patients
is more organized than in control subjects and can be characterized as a
low-dimensional chaotic process.

In a similar study (Woyshville et al., 1999), patients and control gener-
ated time series data, using a visual analog scale to quantify their mood.
The results showed that patients display more variability but less complexity
(measured by fractal dimension) in their time series than controls.

Schizophrenia Time-course of schizophrenic episodes can be investigated
as a non-linear phenomenon. Daily assessment of psychotic derealization
in fourteen schizophrenics have been studied during a period lasting be-
tween 200 and 770 days. Phase space reconstruction, nonlinear forecasting
methods and surrogate data testing were applied to these time series. Time
evolution of psychotic symptoms were classified as non-linear dynamics (8
patients out of 14), linear dynamics (4/14), and stochastic evolution (2/14).
These results show that schizophrenia can be considered as a nonlinear dy-
namical disease, controlled by a low dimensional attractor (Tschacher et al.,
1997). More descriptive methods might also be valuable to the interpre-
tation of symptoms trajectories in schizophrenia (Tschacher and Kupper,
2002; Kupper and Tschacher, 2002)

Addiction Single-case studies have shown that daily alcohol consumption
assessed during a five-year period can be modeled using multi-scale nonlinear
methods (Warren et al., 2003; Warren and Hawkins, 2002).
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Psycho-social crisis intervention In a sample of 40 in-patients of a
psychosocial crisis intervention unit, time series data were obtained by self-
rated evaluation on mood, tension and cognitive orientation (Tschacher and
Jacobshagen, 2002). In crisis intervention, outward cognitive orientation
generally preceded improved mood so that cognitive orientation is responsi-
ble of the experienced affective effects of crisis intervention.

Psychotherapy courses To test empirically the proposal that psychother-
apy can be viewed as a self-organized dynamical system, 28 psychotherapy
courses have been evaluated (Tschacher et al., 1998). The course of the ther-
apies was characterized by a decrease of degree of freedom and an increase
of order. Moreover, these results were independent of the kind of therapy
and increase of order was related to positive outcomes of therapy.

4.2.3 Dynamics of cognitive processes

Time series generated, in a simple binary choice task, by schizophrenics were
more interdependent than that of controls, suggesting that their behavior is
less complex (Paulus et al., 1996, 1999). Moreover, schizophrenic patients
exhibited significantly less consistency in their response selection and order-
ing, characterized by a greater contribution of both highly perseverative and
highly unpredictable subsequences of responses within a test session (Paulus
et al., 1996). Schizophrenic patients also are significantly less influenced by
external stimuli than are normal comparison subjects (Paulus et al., 1999).
This dysregulation is stable over time and independent of psychosocial fac-
tors and symptomatic fluctuations (Paulus et al., 2001).

In motor and perceptual tasks, schizophrenic patients exhibit a higher
instability in their movement’s process (horizontal finger oscillations) and
a higher reversal rate in the perception of an ambiguous figure (the Ru-
bin vase) compared to matched controls. Moreover, motor and perceptual
measures were unrelated. These results suggest that alterations observed in
the motor and perceptual dynamics in schizophrenia are be supported by a
common underlying mechanism (Keil et al., 1998).

Dynamical quantification of language in schizophrenia (Leroy et al.,
2003) have shown that the probability transition between macro-clauses and
micro-clauses is lower in schizophrenic patients than in controls. This re-
sult can be view as a deficit in the dynamical access to the context level in
schizophrenia.

4.2.4 Clinical Interviews

During clinical interview, one can focus either on the patient himself, or on
the patient-therapist interaction.
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Brain dynamics In a pilot study (Rockstroh et al., 1997), time series
were obtained from electroencephalographic records during clinical inter-
views with 10 schizophrenic (6 paranoid, 4 disorganized) and 2 depressive
patients. The time sequence of thought disorders (unusual thought contents,
sudden change in topic, thought stopping,. . . ) were also assessed.

The paranoid subgroup has been characterized by a lower complexity
but more critical transitions in the EEG when compared to disorganized
and depressive patients. But, such results are hardly correlated with a
particular symptom, or to an underlying cognitive process. Furthermore,
sudden phase transitions in brain activity were significantly enhanced prior
to expressions of thought disorders that were detected by the interviewer
and an observer in the conversation, compared with time periods during the
interview without such symptoms.

Cardiac dynamics Since cardiological markers are related to the emo-
tional behavior, they might be of interest to assess the complexity of patient-
therapist interaction (Redington and Reidbord, 1992; Reidbord and Reding-
ton, 1992, 1993). Patient’s cardiac dynamics is less complex when talking
about important topics than for more distant topics. In the case of the ther-
apist, it has been shown that cardiac dynamics depict a higher complexity
when the therapist feels something with the patient rather than about the
patient. Similar results were found in a study of 20 patients where variation
in the complexity of heart’s dynamics was observed when topics changes
(Pincus, 1991).

Patient-therapist interaction The communicative process between pa-
tient and therapist needs to be studied (Langs and Badalamenti, 1994). To
contribute to the construction of research methodology, patient-therapist
interactions were encoded by means a matrix, in which each column repre-
sent a time series obtained by responses at questions about the sequence of
interactions (Rapp et al., 1991). By this method, time series were obtained
and a complexity score was computed.

Psychotherapy is also viewed as a chaotic process, and tools of non-linear
dynamics are used to quantify this qualitative hypothesis. A single case was
analyzed, by means of a time series obtained from the patient-therapist
interactions (Schiepek et al., 1997). It has been shown that the time series
is non-periodic, and the technique of surrogate data demonstrates that this
non-periodicity is caused by a chaotic dynamics, and not by a stochastic
process (or by noise). Fractal dimension and largest Lyapunov exponents
revealed the presence of an attractor, which characterized the chaotic process
of the therapy. Nevertheless, from a clinical point of view, the goal of a
therapy is to lead the patient toward change rather than to stability, thus
the methods used to characterize stationary dynamical systems are hardly
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adapted. The same data were thus re-analyzed (Kowalik et al., 1997) and
demonstrate that, critical transitions appear during the therapeutic process,
so that a non-stationary approach of the phenomena is necessary.

4.2.5 Family system

Family systems may be described by a 5-R’s model where the four com-
ponents (rules, roles, relationships and realities) are determining the fifth
R (response pattern). In order to test the basic assumption of this model
a family discussion was video-taped and analyzed (Pincus, 2001) using the
orbital decomposition procedure (Guastello et al., 1998). The author make
the hypothesis that the family response patterns during the discussion will
show evidence of both coherence and complexity.

The family conversation was transformed into a symbolic sequence. En-
tropy measurements demonstrate the existence of a local coherence for string
lengths equal to 3 and provide evidence for low dimensional chaos within
the global family discussion.

4.3 Conclusion

These studies demonstrate the importance of temporal evolution in psy-
chopathology. Aside from methodological drawbacks, dynamical processes
have been characterized at several levels from physiological to linguistic one.
Moreover, several studies have shown correlation between dynamical pro-
cesses at different levels: brain dynamics and mood assessment, cardiac
dynamics and emotions induced during interviews.

5 Conclusion

We have explored three ways of using mathematical and numerical dynam-
ical concepts in psychopathology. We can conclude that the metaphorical
description of mental troubles and changes are beginning to be modeled and
tested empirically. More efforts are still needed to introduce an adapted
methodology to the field of psychopathology. In fact, empirical tests de-
cribed here are usually either data fitting to models or time series analysis
(either of continous or discrete data). These two approaches are mainly
“data-driven” i.e. they do not rely on a “theoretical” model to be tested
in the data exploration (even when they are based on a model such as a
catastrophe model). This interaction between models and data exploration
is certainly a promising perspective of the application of dynamical systems
to psychopathology.

The application of dynamical methodology to the “human sciences” are,
however, still in its infancy. Several problems are to be worked out:
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1. The development of accurate quantitative tools on short time series
are clearly needed since the numerical methods imported from physics
are highly data demanding.

2. The emphasis has been mainly given to deterministic modelling be-
cause of the fascinating properties of deterministic chaos. Never-
theless, stochastic or deterministic description are only a problem of
scale and choice (in physics, molecular dynamics are deterministic but
stochastic and statistical description of a gas is usually prefered for
macroscopic scale). Thus, the choice of a model should not be ob-
scured by some ’fascination’.

3. Quantification has long being the ideal of science. However, carefully
designed qualitative models might be more informative than the com-
putation of (ill-founded) quantitative indices.

Psychopathology is an adapted field for dynamics since it deals with entities
with clear time evolution. Nevertheless, it could be misleading to imagine
that dynamics can be directly imported in the field of psychopathology with-
out considering its specificity. Different scales usually means that different
tools adapted are to each kind of measures.

The behavioral, biological and clinical data that are mostly used in the
study of mental troubles are observed from one sample at a single time
point. Those data are informative but lack sensitivity to the frequency of
behavior and hence to its temporal organisation. Thus the measurements
of dynamical complexity are complementary to the first kind of empirical
data. These studies are an useful tool for the comprehension of mental and
behavioral changes. They allow one the study of the interaction between
several factors and thus avoid the reduction of mental trouble to the effect
of one single factor.

Because several levels interact, it is important to focalize attention on
break or changes of state. The ruptures or the dynamical changes are ob-
servable at the different observation levels. Clinical data are concordant
with such a point of view since changes are simultaneously observed in neu-
rophysiology, in the strategy of thinking, the kind of beliefs, the types of
behavior or the transactional activities. The only common point susceptible
to be study is these ruptures in dynamics.

Moreover, open systems are by definition coupled with their environ-
ment. Studying human being implies that researchers take into account the
contexts in which a behavior is developed. We must not have only knowl-
edge about the system itself but also about the way it uses to interact with
its environment. Contexts are necessary the broadest possible and imply
physiological parameters, ecological, familial, social and cultural elements.
A last point must be underlined: the role of observers. An observer placed
in an environment has necessarily an effect on the observed system.

18



The generalisation of the “dynamical disease” concept to mental troubles
may open several clinical perspectives:

1. From the point of view of diagnostics, the possibility of defining dy-
namical characteristics specific of a disease (such as a specific rhythm
in a biological functionning) would offer a tool for the biological side
of psychopathology.

2. From the point of view of therapeutics, the isolation of factors that
may influence the behavioral and/or mental changes would offer, to
the clinicians, several paths of action. In that case, changes would be
possible either on the basis of a changes in the control parameters or on
the basis of a perturbation depending upon the level of the intervention
(biological, psychological or social). It is thus possible to imagine new
therapeutical ways based on valid models of the dynamics underlying
the mental trouble.

3. From a theoretical point of view, the model of a “dynamical disease”
underlying mental troubles seems more legitime than a linear “med-
ical” point of view. Clinical signs or symptoms can be considered as
discontinuous changes based on continuous changes in control param-
eters. Thus dynamical systems theory seems particularly well adapted
to the study of mental troubles.

It is thus important to develop the methodology of dynamical systems
towards (rigorous) applications in the “human sciences” and then to
integrate these tools into more classical psychopathological studies.
It seems particularly important to emphasize the study of temporal
dimension of psychopathological phenomena.

Such a dynamical point of view decrease the ontological gap that has
been hypothesized between normal and pathological mental activities:
it favors an underlying continouous point of view even if the behavioral
observables are clearly discontinuous.
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