
COMMENTARY

Why bother to spatially embed EEG?
Comments on Pritchard et al.,
Psychophysiology, 33, 362–368, 1996

LAURENT PEZARD,a,b JEAN-PHILIPPE LACHAUX,a NITZA THOMASSON,a

and JACQUES MARTINERIEa

aUnité de Neurosciences Cognitives & Imagerie Cérébrale, LENA - CNRS UPR 640, Hôpital de la Salpêtrière,
Paris, France

bLaboratoire de Neurosciences Comportementales, Université Paris 5, Paris, France

Abstract

In a recent paper, Pritchard, Krieble, and Duke~Psychophysiology, 33, 362–368, 1996! studied the validity of spatial
embedding of electroencephalographic~EEG! data and rejected this method in favor of time-delay embedding. The
present paper describes the nonlinear characterization of brain dynamics using either spatial or time-delay embedding.
We discuss the arguments published in Pritchard et al.~1996! and demonstrate that the spatial embedding cannot be
rejected on this basis. We also point out the limitations of both spatial and time-delay embeddings related to the spatial
extension and the high-dimensional dynamics of brain activity.
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Nonlinear dynamics has introduced new methods to deal with
cerebral dynamics via electroencephalogram~EEG! quantifica-
tion. The first step of these methods is a procedure termedembed-
ding, which is the reconstruction from observations~i.e., recorded
signals! of the time evolution of the system’s state~i.e., the sys-
tem’s dynamics!. Because the system’s dynamics consists of a
trajectory in the system’s state space, embedding procedures pro-
vide a “reconstructed trajectory,” which is topologically equivalent
to the trajectory in the state space. Characteristics of the recon-
structed trajectory are then quantified to infer the properties of the
dynamical system underlying the signals.

Studies of EEG dynamics usually use a single-channel embed-
ding procedure termed thetime-delay method~for examples see
Jansen & Brandt, 1993!. Because this method prima facie ignores
the spatial extension of brain activity, several authors have pro-
posed to usespatial embeddingas an alternative multichannel
method~e.g., Destexhe, Sepulchre, & Babloyantz, 1988; Dvorak,
1990; Pezard, Martinerie, Breton, Bourzeix, & Renault, 1994!. In
a recent paper, Pritchard, Krieble, and Duke~1996, p. 367! con-
cluded that spatial embedding “does not appear to reconstruct state
space dynamics accurately.” The purpose of our article is to ex-
amine the validity of this conclusion.

The first part of our article is a step-by-step discussion of
Pritchard et al.’s arguments and simulations. In the second part, we

briefly review possible solutions to deal with the major character-
istics of brain activity: spatial extension, dynamical heterogeneity,
and high-dimensional dynamics.

Time-Delay and Spatial Embedding: A Reminder

Principles of Nonlinear Analysis: Time-Delay vs.
Spatial Embedding
Nonlinear analysis can be used when a system’s dynamics must be
characterized on the sole basis of a set ofm measurementsX ~t! 5
$xj ~t!% ~ j 5 1, . . . ,m! of the system’s statej~t!. X ~t! is related to
j~t! through a measurement functionH. Thus, for a system’s state
j~t! defined in ak-dimensional spaceRk, H is an application from
Rk to Rm andX ~t! 5 H @j~t!#. For EEG,X ~t! corresponds tom
potentials values~recorded overm electrodes!, which depend on
j~t!, that is, the activities of all thek macro-columns of the brain.

The goal of dynamical analysis is to infer the dynamics~i.e., the
j-trajectory in the state spaceRk! from the measurementsX ~t!.
Under the assumption that the time evolution ofj~t! is governed
by a differential system, this is achieved following a three-step
procedure:

• A trajectory, topologically equivalent to thej-trajectory, is re-
constructed from the measurementsX. This step is the so-called
“embedding procedure.”

• Topological invariants of the reconstructed trajectory are then
computed, for instance: dimensions, Lyapunov exponents, non-
linear prediction, and so on~for a recent review see Kantz &
Schreiber, 1997!. These invariants are closely related to the
dynamics.
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• In addition, because correlated noise can depict similar charac-
teristics as truly nonlinear dynamics, surrogate data testing has
been introduced to validate the nonlinear indices obtained with
the first two steps~e.g., Prichard & Theiler, 1994; Theiler, Eu-
bank, Longtin, Galdrikian, & Farmer, 1992!.

Measurements at each recording sitej, during an epochT at a
sampling rate 10t, provide a time series$xj ~i.t!% ~i 5 1, . . . ,N and
T 5 N 3 t!, which can be embedded using several methods~suc-
cessive derivatives, time-delay, spatial, and spatiotemporal embed-
dings!. In this section, we will restrict our discussion to the methods
discussed in Pritchard et al.~1996!. The embedding method is
applied to these time series to build an observation matrixV de-
fined as:V 5 $v ~t!% with t 5 i{t for i 5 1, . . . ,Nv and v~t! are
n-dimensional vectors. TheNv columns ofV are Nv successive
vectors corresponding to a trajectory in ann-dimensional space.

The first technique,time-delay embedding~or delay method or
single-channel method!, uses recordings from one single sitej and
the vectorsv~t! are defined as:

v~t! 5 $xj ~t!; xj ~t 1 l{t!; xj ~t 1 2{l{t!; . . . ;xj ~t 1 ~n 2 1!{l{t!%

with l integer.

Alternatively, the second technique,spatial embedding~or multi-
channel method!, uses recordings fromn sites ~n # m! and the
vectorsv~t! are defined as:

v~t! 5 $x1~t!; x2~t!; . . . ;xn~t!%.

Those procedures are based on two fundamental theorems: time-
delay embedding is based on Takens’ theorem~Takens, 1981! and
spatial embedding on Whitney’s theorem~Whitney, 1936!. Those
theorems have been studied and generalized by Sauer, York, and
Casdagli~1991!.

Rejection of Pritchard et al.’s Arguments
On the basis of the above definitions, we will comment on the
main arguments that led Pritchard et al.~1996! to reject spatial
embedding in favor of the time-delay method. Although the au-
thors provided a correct definition of spatial embedding, several
points in their discussions of “the issue of stationarity,” “the origin
of spatial embedding,” and “differentiable embedding,” need to be
clarified.

The issue of stationarity.Both embedding methods only apply
to stationary dynamics, which means that during the period of
observation, the system’s parameters should remain constant in
time. Analogously with this constraint of time-stationarity for tem-
poral embedding, Pritchard et al.~1996, p. 363! introduced, in the
case of spatial embedding, the new constraint of “spatial station-
arity” in the sense of a spatially homogeneous dynamical behavior.
Contrary to the temporal stationarity, this constraint is not actually
needed for the application of the spatial embedding. Furthermore,
a spatially extended system can split into domains depicting dif-
ferent dynamical behaviors while following a time stationary dy-
namics~Kaneko, 1989!. The fact that “the human cortex has regional
neuropsychological specialization” should be related to thisspatial
dynamical heterogeneityand should be treated specifically.

The origin of spatial embedding.In a seminal paper, Eckmann
and Ruelle~1985, p. 627! proposed that spatial embedding may be
used for the reconstruction of the dynamics from an experimental
signal and concluded that “of course one should measure several
experimental signals instead of only one whenever possible.” This
approach was applied to deal with the problem of “spatially local-
ized degrees of freedom”~pp. 648–649, the very paragraph to
which Pritchard et al. referred!. They did recommend multiple
simultaneous recordings of the same system’s state to obtain char-
acteristics regarding the whole system~which is markedly differ-
ent from “the recording at a given locus from a set of identical
brains @i.e., systems# in the same dynamical state” in Pritchard
et al., 1996, p. 363!.

Differentiable embedding.Pritchard et al.~1996! conjectured
inadequately that spatial embedding should not be differentiable
~p. 363! because Whitney~1936! and Takens~1981! proved that
both reconstruction methods lead to a differentiable embedding
~Ott, Sauer, & Yorke, 1994!. Moreover, EEG can be approximated
by a linear combination of brain state variables~Lachaux et al.,
1997! that is indeed continuous and differentiable.

Inadequate simulation.Pritchard et al.~1996! used a “Lorenz
system” simulation~pp. 363–365! as their key argument to
conclude that “as a reconstructor of state-space dynamics, it@spa-
tial embedding# fails.” The authors produced three time series
$x~t!, y~t!,z~t!% governed by Lorenz differential equations. The
observation matrixV5 $v~i !% is constructed from the time series
x~t! with ~i 5 1, . . .,1024 andn # 15!:

v~i ! 5 $x~i !; x~i 1 1024!; x~i 1 2 3 1024!; . . . ;

x~i 1 ~n 2 1! 3 1024!%.

This procedure is not a spatial embedding but a time-delay
method with a long time window~w 5 ~n 2 1! 3 1024!. It is thus
ill-suited to prove anything about spatial reconstruction. Pritchard
et al. ~1996, p. 363! argued that their simulation mimics a spatial
embedding because “each series had the same chaotic dynamics,
that is, each was ‘on the same attractor.’ ” Nevertheless, in case of
spatial embedding, then coordinates of the reconstructed vectors
must ben simultaneous measurements of the same state point and
not of the same attractor. In their simulation, increasing the em-
bedding dimension leads to the addition of a time series measuring
a system of dimension 2.07: no saturation can be expected in this
case.

Several numerical tests dealing with the problem of spatial
embedding of brain dynamics have been proposed~Lachaux et al.,
1997! on the basis of a simulated EEG. These tests have shown
that the time-delay reconstruction was ill-suited for the reconstruc-
tion of spatially extended systems, whereas spatial embedding per-
formed better.

Pritchard et al.~1996! showed that dimension estimation using
multichannel embedding may be fooled by linear Gaussian pro-
cesses with cross-channel correlation. But, in this case, an appro-
priate surrogate data test~Prichard & Theiler, 1994! does not permit
one to reject the linearity hypothesis. In the case of cross-correlated
signals, singular value decomposition should be used to obtain
independent coordinates for spatial embedding.

Conclusion
From the above discussion we conclude that the theoretical argu-
ments do not reject spatial embedding. The rejection of spatial
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embedding by Pritchard et al.~1996! arises from the following
confusion: EEG spatial embedding is based on the simultaneous
measurements of the system’s state and not on the measurements
of one state variable of the same attractor.

Dealing With Brain Dynamics

High Dimension of Brain Dynamics
Cerebral cortex is composed of approximately 104 or 105 macro-
columns the activities of which are recorded through EEG~Nunez,
1990!. This number gives an approximate lower bound for the state
space dimension of macroscopic brain dynamics. However, due to
delays and the long range interactions in neuronal systems, brain
dynamics should be more reliably defined in an infinite dimen-
sional space. Nonlinear analysis relies on the fact that most infinite
dimensional systems explore a subset of their state space in which
finite dimension is the critical parameter for embedding techniques
~Sauer et al., 1991!. However, finite dimension does not mean low
in the sense of embedding dimensions usually used~less than 10!
and neither spatial embedding nor time-delay permits one to cor-
rectly describe high-dimensional dynamics~Lachaux et al., 1997!.

Sauer et al.~1991! proposed theorems, for time-delay and spa-
tial embedding, dealing with partially incorrect reconstructions
due to a too low embedding dimension~i.e., n , 2d!. These
theorems are of little help in the case of an experimental procedure
because they suppose that the subset’s dimension is known. How-
ever, it has been shown that correlation dimension~Ding, Grebogi,
Ott, Sauer, & Yorke, 1993! and prediction~Schroer, Sauer, Ott, &
Yorke, 1998! can be computed with a certain accuracy even when
the trajectory is partially reconstructed.

The most obvious way of dealing with high-dimensional dy-
namics is to increase the embedding dimension, which can be
achieved in several ways:

• In the case of time-delay embedding, the number of time-
delayed coordinates can be increased. Nevertheless, the impor-
tant loss of correlation between the first and the last coordinates
is a drastic drawback of this solution~Martinerie, Albano, Mees,
& Rapp, 1992!.

• In the case of spatial embedding, the number of recording sites
can be increased. This solution is limited in the case of EEG,
because the correlation between recording sites entails that new
sites do not increase significantly the quantity of information
about brain dynamics. The redundancy between the recordings
can be reduced using singular value decomposition~SVD! of the
observation matrix, without altering the characteristics of the
dynamics~Albano, Muench, Schwartz, Mees, & Rapp, 1988!.

• Both spatial and time-delay methods can be used~Kantz &
Schreiber, 1997! following a generalization of Takens’ theorem
~Sauer et al., 1991!. An example of its application to simulated
signals is depicted on Figure 1. This figure shows that the cor-
relation dimension computed in the case of spatial embedding
with time delay underestimates the real correlation dimension
more than spatial embedding. This method has been used with
success for the analysis of neuroelectrical data~Martinerie et al.,
1998!.

Nevertheless, increasing the embedding dimension still suffers
from limitations including computation cost, loss of simple geo-
metrical representation and increase of noise level.

Cerebral Cortex as a Spatially Extended System
Connections between different cortical areas can be described at
different levels~Schüz, 1995! as short range~local projection of
pyramidal cells!, medium range~axonal projection of pyramidal
cells from a sulcus to neighboring ones!, and long range connec-
tions ~such as corpus callosum or telencephalic fasciculi!. More-
over, nonsynaptic interactions~diffuse neurotransmitters, gaseous
messengers, neuroglia function, etc.! greatly complicate the rep-
resentation of cortical integration. These arguments imply that,
from an anatomical point of view, the cerebral cortex can be con-
sidered as a spatially extended system with high connectivity rather
than a juxtaposition of independent areas. The level of coopera-
tivity within and between these neuronal networks depends on the
cerebral state and0or the presence of a neurological disease and
would imply changes in the cerebral spatiotemporal dynamics.

Figure 1. Correlation dimensions computed for a coupled map lattice
system, measured through a three-shell spherical model, as a function of
the embedding dimension in two reconstruction cases: using themultichan-
nel methodwith the measurements~l for raw data andL for the mean
value of surrogate data!, and using themultichannel method with time delay
for four measurements~n for raw data and▫ for the mean value of
surrogate data!. The dotted line depicts the correlation dimension computed
within the 13-dimensional state space with the original data~5.98!. The
standard deviation observed for the surrogate data cannot be depicted on
the figure. The differences between raw and surrogate data correlation
dimensions are always significant.

These data were computed with the method used in Lachaux et al.
~1997!. A simulated electroencephalogram was generated, using direct prop-
agating equations, on 19 electrodes placed on the scalp~according to the
10-20 international electrode placement system! of a three-shell spherical
model of the head. The activities over time of 13 cortical current dipoles
were simulated according to the following definition of coupled map lattice:

xi ~t! 5 ~12 E! 3 F @xi ~t!# 1 ~E02! 3 $F @xi21~t!# 1 F @xi11~t!#%

F~x! 5 12 a{x2

for i 5 1, . . . ,13;a 5 1.9; E 5 0.3 and periodic boundaries.
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The study of spatially extended systems’ dynamics is still in
infancy but it already provides meaningful results for the physiol-
ogists. The quantification of spatially extended systems’ dynamics
using time-delay embedding and correlation dimension computa-
tion has been widely tested~e.g., Lorenz, 1991!. These measure-
ments often depend on the recording site, but it has been shown
that the spatial variations of correlation dimension give erroneous
information about the system’s dynamics. These results have been
replicated in the case of EEG simulations~Lachaux et al., 1997!.
The validity of correlation dimension maps supposed to charac-
terize brain dynamics is thus questionable from a strict dynamical
point of view even if those indices remain statistical indicators of
different states of brain activity.

Spatial embedding enables the reconstruction of spatially ex-
tended systems’ dynamics, but it cannot be used to compute high
correlation dimension~Lachaux et al., 1997!. The computation of
dimension densities~Bauer, Heng, & Martienssen, 1993!, which
are locally defined degrees of freedom, is an alternative approach
of spatiotemporal dynamics.

Obviously, brain dynamics is spatially heterogeneous and can
split into domains depicting different dynamical behaviors. Nev-
ertheless, this fact does not mean that those domains are indepen-
dent, because their very existence is a result of the interaction
within the whole system. To deal with this problem, we have
proposed a numerical method based on multichannel reconstruc-
tion and nonlinear forecasting that permits one to compute local
complexity~i.e., entropy! for each recording site~Pezard, Martin-
erie, Müller, Varela, & Renault, 1996!. This method leads to a set
of complexity measures which defines the spatial pattern of brain
dynamics’ complexity~Pezard et al., 1998!.

To characterize the spatial dynamical heterogeneity resulting
from the interactions within a spatially extended system~such as
the brain!, we conjecture that local quantifiers must be defined
within the context of the whole system’s dynamics. Spatial em-
bedding is the first step to take into account the whole system and
quantifiers should be developed within that context.

Practical Issues
Both reconstruction methods share a set of drawbacks that are the
same for all signal-processing techniques: temporal and spatial
sampling, precision of the digitizer, and noisy time series of finite
length. We will focus on three limiting factors: the choice of the
parameters that permit one to avoid any correlation between re-
constructed vector’s coordinates, the issue of stationarity, and the
problem of noise.

Correlation between vector’s coordinates.In the case of time-
delay embedding, the parameterl defines, withn, the time window
w~w 5 @n 2 1#.l ! that is a critical parameter for this method. The
parameterl is a function of the temporal loss of correlation of
the times series$xj ~t!% . Neither the autocorrelation function nor
the mutual information are sufficient to define its optimal value
~Martinerie et al., 1992!. Several other methods have been pro-
posed to define those parameters without using the trial-and-error
procedure~e.g., Rosenstein, Collins, & De Luca, 1994!.

In the case of spatial embedding, cross-channel correlations
lead to embeddings with dependent signals. Because the electrode
placement cannot be modified after the experiment to determine
the best embedding, a specific procedure is needed to overcome
this major drawback. SVD of the observation matrix leads to a set
of linearly independent coordinates and can be used to obtain a
reasonable embedding dimension~Albano et al., 1988!.

The issue of time stationarity.All the embedding techniques
suppose the dynamics to be time stationary during the observation
epoch ~several seconds for brain activity!. Stationarity can be
checked with recurrent plots~Eckmann, Oliffson Kamphorst, &
Ruelle, 1987! or with cross-prediction techniques~Schreiber, 1997!.
Nevertheless, even if the stationary condition is not fulfilled, other
interesting problems can be investigated. In that case, the structure
of the dynamics during a defined period of time~e.g., the second
following a stimulus presentation or several seconds of a particular
condition! should be studied. For long periods, the variation of the
dynamics’ parameters certainly leads to the characterization of a
family of attractors~Ruelle, 1987!. For short periods, transients
need to be characterized and instantaneous methods~such as wave-
lets! could be worth considering.

Noise.Even a low noise level~either dynamical, i.e., integrated
in the dynamics, or measurement, i.e., independent from the dy-
namics! can cause a total loss of the dynamical structure~Casdagli,
Eubank, Farmer, & Gibson, 1991!. Global ~Albano et al., 1988!
and local~e.g., Schreiber & Grassberger, 1991! noise reduction
methods have been proposed to deal with measurement noise. In
the case of EEG recording, the average reference which corre-
sponds to the sum of the signal obtained on one electrode with the
average dynamics of the whole brain is a noise source easily avoided
~Lachaux et al., 1997!.

EEG recordings are filtered time series. The filtering is due
both to the data collection apparatus and to the low pass filtering
induced by passage through the skull and scalp. Filtering may
induce errors in the determination of dynamics characteristics~Ott
et al., 1994; Sauer et al., 1991!. Simulations are needed to show
exactly what information about brain dynamics can be obtained
with an intrinsically filtered signal such as EEG.

Conclusion: Why Bother to Spatially Embed EEG?

Because the spatiotemporal characteristics of brain activity are
important, dynamical methods for their characterization are needed.
Spatial embedding, even if not the panacea, is a first attempt to
deal with the spatial extension of brain dynamics. We have shown
that this approach has been unfairly rejected by Pritchard et al.
~1996!. Furthermore several arguments suggest that time-delay
method is inadequate for spatially extended systems. Spatial em-
bedding also suffers limitations~high dimension and spatial dy-
namical heterogeneity for example! but a sage conclusion is to
encourage a cautious development of techniques that permits local
quantification within the context of global dynamics.
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