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Depression as a Dynamical Disease

Laurent Pezard, Jean-Louis Nandrino, Bernard Renault, Farid El Massioui, Jean-

Francois Allilaire, Johannes Miiller, Francisco J. Varela, and Jacques Martinerie

Mathematical models are helpful in the understanding of diseases through the use of
dynamical indicators. A previous study has shown that brain activity can be characterized by
a decrease of dynamical complexity in depressive subjects. The present paper confirms and
extends these conclusions through the use of recent methodological advances: first episode
and recurrent patients strongly differ in their dynamical response to therapeutic interventions.
These results emphasize the need for clinical follow-ups to avoid recurrence and the necessity
of specific therapeutic intervention in the case of recurrent patients.
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Introduction

A number of studies provide a view of disease as a change
in an intact physiological system operating within a range
of control parameters leading to abnormal dynamics
(Glass and Mackey 1979; Mackey and Milton 1987; Pool
1989; Schiff et al 1994). The onset of disease can be
associated with changes from one dynamical regime to
another (Mackey and Glass 1977). Such changes (called
bifurcations) have been observed in neurology (Milton et
al 1989) and particularly in epilepsy, which constitutes an
illustration of obvious qualitative changes visible in macro
potentials (Babloyantz and Destexhe 1986). In depression,
altered biological rhythms, such as circadian rhythms
(Wehr and Goodwin 1979; Wehr et al 1982) and cortisol
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secretion (Hollister et al 1980) have been observed, but
traditional electroencephalographic approaches do not al-
low definition of specific modifications in brain dynamics.

We have started from the assumption that new nonlinear
methods could provide insights into such psychopatholog-
ical changes. Methods of neuronal and global brain dy-
namic characterization have been developed since the
1980s (for reviews see Pritchard and Duke 1992; Freeman
1992a; Elbert et al 1994), and the use of this framework in
the study of mental disorders has been considered as
promising (Freeman 1992b; Globus and Arpaia 1994;
Redington and Reidbord 1992).

In early studies brain dynamics was quantified using
correlation dimension as a dynamical indicator in neuro-
logical pathologies (e.g., Babloyantz and Destexhe 1986,
1988; Pijn et al 1991; Pritchard et al 1993) or in psychi-
atric diseases (Roschke and Aldenhoff 1993). Neverthe-
less it has been shown that this method has serious flaws
when applied to spatially distributed systems such as the
brain (Albano and Rapp 1993; Politi et al 1989; Lorenz
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Table 1. Mean Scores and Standard Deviations of the Groups of First-Episode (1st ep.) and
Recurrent (Rec.) Patients for Hamilton Depressive Rating Scale (HDRS), Montgomery and
Asberg Depressive Rating Scale (MADRS), Widlscher’s Depressive Retardation Scale (WRDS),

and Tyrer’s Anxiety Scale (TAS)

N Age (years) Sex HDRS MADRS WRDS TAS
Ist ep.
DO 8 34.6 8 fem. 23+23 28 £ 45 17*6 16 £ 6.8
D21 6 35 6 fem. 64 9+26 8§46 1063
Rec.
DO 8 45.6 6 fem. 25 *44 31 *45 25+32 18 =44
D21 7 46.2 6 fem. 6*1.7 10 £26 9+31 10 =59

D0 corresponds to the first recording and D21 to the second one. (N: group effective.)

1991). To avoid these drawbacks, in this study we adapt
nonlinear forecasting methods (Casdagli 1989; Farmer and
Sidorowich 1987; Sugihara and May 1990) to characterize
multichannel electroencephalogram (EEG) recordings
(Destexhe et al 1988). This method allows one to compute
the entropy of brain dynamics, which quantifies its rate of
loss of information (Wales 1991).

Signals generated by stochastic processes, however, can
exhibit characteristics similar to those of natural nonlinear
deterministic systems (Rapp et al 1993), leading to the
difficulty of distinguishing between these two types of
processes on the basis of empirical results. To deal with
this problem, we have compared the prediction of EEG
data to that of random surrogate data (Theiler et al 1992;
Prichard and Theiler 1994). If the dynamical indices differ
significantly between raw and surrogate data, then the
hypothesis that the actual data correspond to linearly
correlated noise can be rejected with a level of statistical
confidence.

In a preliminary study (Nandrino et al 1994), we have
shown that depressive patients possess a brain electrical
activity that is more predictable than that of control
subjects. After treatment, first-episode patients recover a
level of predictability comparable to controls, whereas
recurrent patients do not. In the present study, surrogate
construction allows us to strengthen a reliable diagnosis of
nonlinear processes in brain dynamics, and changes asso-
ciated with recovery processes as a function of recurrence
of depressive episodes are characterized using both linear
and nonlinear indices.

Materials and Methods
Subjects

Two groups of eight right-handed inpatients have been
selected according to the DSM-III-R criteria for major
depressive episode. The duration of the episode was at
least 1 month. Their minimum scores were: 19 in the
Hamilton Depression Rating Scale (Hamilton 1960), and

22 in the Montgomery and Asberg Depressive Rating
Scale (MADRS; Montgomery and Asberg 1979). The first
group consisted of first-episode depressive patients free of
antidepressant treatment and the second one of previously
treated patients with recurrent depressive episodes. Ham-
ilton Depression Rating Scales, MADRS, Tyrer Anxiety
Scale (Tyrer et al 1984), and Wildlécher Psychomotor
Retardation Scale (Widlocher 1983a) were performed both
upon entrance, and when patients were discharged from
the hospital about 3 weeks later (see Table 1 for group
descriptions).

A control group of eight subjects, without any history of
psychiatric illness, was matched for age (mean age: 36
years) and gender to the patients.

Treatment

Before the first recording session, recurrent patients were
placed under a 3-day washout period of their previous
treatment. During their stay in the hospital all patients
were treated with drugs, no electroconvulsive therapy was
used, and counseling was similar in each group. The
first-episode patients were treated with clomipramine at a
150-mg daily dose during the whole stay. For three
recurrent patients the treatment was similar to those of
first-episode patients. In five cases, another tricyclic (flu-
oxetine) was added to clomipramine after an initial period
of 10 days.

Task

Two tones of identical duration (150 msec) but of different
frequencies (550 Hz and 1500 Hz) were randomly pre-
sented via earphones to the left or the right ear (random
interstimulus interval from 1800 msec to 2300 msec). On
average low and high tones were equiprobably distributed
for each ear. Subjects were asked to respond as fast as
possible to the tones by pressing a key with their right
index finger for the low tones and with their left index
finger for the high tones, independently of the stimulated
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ear. This attention task was chosen in order to maximize
the “mental load,” which has been found to be crucial in
differentiating mental illness from normality (e.g., Bar-
ibeau-Braun et al 1983; El Massioui and Leseévre 1988).

EEG Recording

EEG was recorded from 12 derivations set on the scalp
according to the 10-20 international electrode placement
system (Fpz, Fz, Cz, Pz, F8, F4, F3, F7, C4, C3, P4, P3)
and referred to the nose. Horizontal and vertical electro-
oculograms (EOG) were simultaneously recorded in order
to correct eye movements (Gratton et al 1983). The lower
bandpass limit was 0.08 Hz for EEG and 0.02 Hz for EOG.
Both upper bandpass limits were 30 Hz. The data were
digitized on-line on 12 bits using a 250-Hz sampling rate
(sample and nonhold device with interchannel sampling
rate equal to 8 psec). The signal was stored during the
experiment on a hard disk of a PC 386-33 MHz, and then
transferred onto the disk of a Micro-Vax for further
processing.

Patients were recorded twice: upon their entrance to the
hospital and when discharged, after antidepressant treat-
ment and a minimal improvement on depressive scales of
50%. For the second recording session, six first-episode
and seven recurrent patients out of the eight of the first
session were recorded. The control subjects were also
recorded twice with a 21-day interval.

Numerical Methods

NONLINEAR FORECASTING AND ENTROPY COMPUTATION.
The detailed use of certain nonlinear methods (forecasting
and entropy computation) in cerebral dynamics studies
have been described elsewhere (Pezard et al 1994). Here,
only the main steps are summarized (reconstruction of the
trajectory, noise reduction, and quantification of the
dynamics).

Reconstruction of the Trajectory. For each subject, three
contiguous epochs of 32.8 sec (8192 samples) were
analyzed. The records chosen for analysis were obtained
after the subject had learned the task and had become
comfortable with the recording environment. The trajec-
tory of the system was reconstructed separately for each
epoch (130 in total) in a 12-dimensional embedding space
using the multichannel method (Destexhe et al 1988;
Dvorak 1990; Pezard et al 1992), and the resulting
dynamical measures obtained were averaged for each
subject for each day of recording. Among the 45 individ-
ual daily averages (16 controls, 15 recurrent patients, and
14 first-episode patients), 40 were computed with three
epochs, four were computed with two epochs, and one was
computed with one epoch. The failure to compute all 45
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averages with three epochs was due to artifacts in the
original records.

For computational reasons, the set of recorded values
was normalized and centered: for each channel the signal
was shifted to zero mean and rescaled to unit variance.

Singular Value Decomposition. Singular value decom-
position of the cross correlation matrix was computed, and
those axes for which the variance was inferior to the noise
level (102 in our case) were deleted. This reduction of the
space dimension strongly decreases the computation time
for the next steps, with no significant loss of information
(Broomhead and King 1986; Albano et al 1988). In this
reduced space, a k-d tree partition (Bentley 1975, 1979)
was used to determine the nearest neighbor of each point
to be used in the prediction method.

Starting from previous results (Morgera 1985), we have
computed an index (A) to quantify the linear complexity
of the correlation matrix, defined as follows:

A = —(Z;v;log(v))log n

where n is the number of channels (n = 12) and v, (i =
1, .., 12) denotes the ith nonzero normalized eigenvalue. A
varies from O for a one-dimensional distribution, to 1 for
equidistributed white noise. It quantifies the shape of the
distribution of the scatter of points within state space, and
can be considered as a quantity analog to the “statistical
entropy.” This index is related to the one used previously
by Palus et al (1991).

Computation of Predictability. The data set was divided
into two equal parts. The first one, or learning set, was
used to model the dynamics of the system, yielding a
series of predictions. The second set, or test set, was used
to evaluate the predicted values: the mean correlation
coefficient p between the observed and the predicted series
was computed for 1-10 time steps ahead (Sugihara and
May 1990).

The first part of the curve of In(1 — p) as a function of
the prediction time (7p) is linear for chaos, whereas it is
not for Brownian motion (Tsonis and Elsner 1992). Wales
(1991) has shown that for the linear part of the curve:

In(1 — p) = 2In(Sy/(20,)) + 2KTp

where o, is the variance of the observed data. Two
characteristic indices (K and S,) can thus be computed
using the regression line of the first three points of this
curve. The information index, S, reflects the representa-
tivity of the learning set as compared to the test one and
thus the stationarity of the dynamic. The Kolmogorov
entropy, K, quantifies the rate of loss of information
during the temporal evolution.

TEST FOR NONLINEARITY. Since dynamical methods
may be biased by linearly correlated noise (Rapp et al
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1993), the validity of dynamical indices should be tested
by the comparison between the values computed on raw
data and those computed on surrogate data with the same
linear properties (power spectrum, autocorrelation func-
tion). Surrogate data are constructed from raw data by
randomizing their phases in the Fourier domain (Theiler et
al 1992). To have a reliable test against linear bias in the
case of multivariate data, the surrogates have to preserve
also the cross-correlation between the individual channels
(Prichard and Theiler 1994). Such multivariable surrogates
are used here to characterize multichannel EEG record-
ings.

More precisely, we have adopted the following proce-
dure (Rapp et al 1994):

1. Assume a null hypothesis that the raw data are
linearly correlated noise;

2. One or more dynamical measure M are obtained
from the raw data; these shall be denoted here as
M., In our case, a set of five measures was used to
test the null hypothesis (see below, step 6);

3. An ensemble of multi-surrogate data sets are con-
structed, in agreement with the null hypothesis
defined in step 1, i.e., as linearly correlated noise. A
total of 39 multi-surrogate data sets are used to
ensure a level of confidence of .05 for the rejection
of the null hypothesis (see step 5);

4. The same measure M, introduced in step 2, is
calculated from the set of surrogates; its mean value
is denoted here as (M, and its standard deviation
is denoted o,

5. An estimation of the difference between M,,,, and
(M,,,) is now obtained by means of the estimate Sy,
(Theiler et al 1992):

ur.

SM = Mraw - <Msur> l /Usur

Roughly, if S,, = 2, one can reject the null hypoth-

esis for the measure M, with a confidence level of

approximately p < .05. If the distribution of S, is

Gaussian, a probability value can be directly ob-

tained (Larson 1982); however, we used a more

robust empirical measure of the probability by the
application of the Monte-Carlo probability (Barnard

1963; Hope 1968): P,, = [number of cases M,,,, =

M /(39 + D) if M, = (M), and P,, = [number

of cases M, = M 139 + 1) if M, = (M)
Under these conditions the null hypothesis is re-
jected if P,, = 1/40 (= .025) with the confidence
level .05 for two-tailed test.

6. We have applied this procedure for the following
five measures: the values of the correlation coeffi-
cient p for the first three prediction times (Tp = 4,
8, and 12 msec), K, and S, (see above, under

L. Pezard et al

Table 2a. Percentage of Rejections of the Null Hypothesis for
Each Group and Each Recording Session

First recording Second recording

12.5% (3/24)
28.6% (6/21)
26.1% (6/23)

33.3% (8/24)
33.3% (6/18)
40.0% (8/20)

Controls
First-episode patients
Recurrent patients

In parentheses, the number of rejections is given with the total number of
windows studied.

Table 2b. Percentage of Windows Belonging to the Intervals
Defined in Number of Sigmas by S,, for the Five Measures M
Tested

M 0<Sy=2 2<S§,<4 4<S,
p (Tp = 4 msec) 65.4% (85) 169% (22)  17.7% (23)
p (Tp = 8 msec) 66.2% (86) 192% (25)  14.6% (19)
p (Ip = 12 msec) 67.7% (88) 19.2% (25) 13.1% (17)
K 71.5% (93) 13.8% (18) 14.6% (19)
S, 66.2% (86) 16.2% (21) 17.7% (23)

The number of windows is given in parentheses. S,, = 2 corresponds
approximately to the 5% significance threshold. p: correlation coefficient; 7p:
prediction time; K: entropy; S,: information index.

Nonlinear Forecasting and Entropy Computation).
Only when these five measures were significant did
we accept the time series as truly nonlinear.

COMPARISON BETWEEN GROUPS. We have also com-
pared the shape of the prediction curves between the
subjects groups. An analysis of variance (ANOVA) has
been performed using two intergroup factors: the subjects
group (three modalities: controls, first-episode, and recur-
rent patients) and the recording sessions (two modalities:
day 0 and day 21); the intragroup factor was the prediction
time (7p, 10 modalities). In the ANOVA calculations the
sphericity (degree of covariance-matrix asymmetry) has
been corrected by the Greenhouse—Geisser adjustment of
degrees of freedom. Finally we have compared the values
for K, S,, and A between the subjects for each day of
recording (Mann—Whitney U test) and between the two
recording sessions (Wilcoxon matched pairs test).

Results

Comparison of Raw and Surrogate Data

The null hypothesis was formally rejected by the two-
tailed test at the 95% level in 37 of the 130 windows
(28%). This is considerably more than the expected
number (5% or 6.5 windows) of rejections if the null
hypothesis were true for all data sets. For each group, the
rejection rate is similar (see Table 2a). Table 2b presents
an average of the distance (index S,, in Numerical Meth-
ods) for the ensemble of five measures (defined in step 6
above) calculated for all 130 windows. For illustration,
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Figure 1. Values of S, (= | ppy — <pgur=> | 0,,) and their error
bars (Theiler et al 1992) as a function of prediction time (7p in
milliseconds) for the three recording epochs in one subject. The
dotted lines, represent approximately the 5% level of confidence.
The first three points (used to compute nonlinear indices) are
distinguish from the rest of the curve, shown here for complete-
ness.
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Figure 1 shows an example of significant rejection of the
null hypothesis for two out of three windows in one
subject (recurrent patient, second recording session).

Clinical Results

Figure 2 shows the mean prediction curves for each group
and for each of the two recording sessions. They are
similar to those previously published (Nandrino et al
1994), confirming that this new data normalization does
not alter the overall results. The ANOVA shows that the
10-step prediction time can be clearly differentiated what-
ever the group (F gs. 5043 = 250.37; p < .001). Table 3
summarizes the ANOVA results obtained when the sig-
nificant interaction between groups and prediction time
(F, 0 0w = 619 p = .002) is decomposed. At day 0, the
prediction curves do not differ between the two groups of
depressed patients. Predictability in the case of depressed
patients’ brain dynamic is significantly higher than that of
controls. At day 21, the first episode patients recover a
level of prediction that can no longer be differentiated
from the controls, whereas the recurrent patients’ predict-
ability remains above that of both first-episode patients
and controls (note that the last comparison is slightly
above the significance threshold).

First Recording Second Recording
09T T
p .- -
08T 4
0.7 T +
06T <
0.5 e p——+—1 e T s s S |
4 38 16 28 40 4 8 16 28 40
Tp (ms)
-o- Cont. -~ 1st ep. -= Rec.

Figure 2. Mean prediction values for the two recording sessions and the three groups. Cont.: controls; Ist ep.: first-episode patients;
Rec.: recurrent patients; p: correlation coefficent; Tp: prediction time in milliseconds. The vertical bars represent the largest standard

CITOrS.
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Table 3. ANOVA Results of the Comparisons of the Prediction Curves for the Three Groups for the Two Recording Sessions

First recording

Second recording

Cont./Rec. Cont./1st ep. Rec./1st ep. Cont./Rec. Cont./1st ep. Rec./Ist ep.
df 1.36; 19.07 1.43; 20.05 1.33; 18.64 1.28; 16.67 1.20; 14.36 1.43;15.78
F 10.09 4.57 0.89 3.95 0.41 5.32
p 0.003 0.033 0.389 0.055 0.570 0.025

Cont.: controls; Ist ep.: first-episode patients; Rec.: recurrent patients; df: number of degrees of freedom.

Bold characters represent significant differences (p < .05).

Table 4 shows the values of A, K, and §,, and Tables 5
and 6 give the results of the statistical tests of the different
comparisons for these indices between groups and record-
ing sessions.

LINEAR ANALYSIS. For the first recording session, the
recurrent patients display a lower level of linear complex-
ity than that of controls. No difference is observed either
between first-episode patients and recurrent patients or
between first-episode patients and controls. For the second
recording session, the recurrent patients have a lower level
of linear complexity that is significantly different from the

Table 4. Values of Linear (A) and Nonlinear (K and S;)
Indices for the Three Groups and the Two Recording Sessions

A K (sec™) So

Cont,

DO 0.52 (3.4 X 1073 44.1 2.7 0.40 (1.4 X 1072

D21 0.50 (3.3 X 1072) 39.0 (4.5) 0.42(2.1 X 1073
Ist Ep.

DO 0.52(42X 1073 30.6 (5.9) 0.47 (2.6 X 107%)

D21 0.50 (6.5 X 1073 49.1(5.1) 04128 X 1073
Rec.

DO 040 (43 X 1073 40.7 (5.0) 040 (32X 1073

D21 0.29 (3.7 X 1073 35.5(8.7) 0.39 (3.1 X 107%)

Cont.: controls; Ist ep.: first-episode patients; Rec.: recurrent patients; DO: first
recording session; D21: second recording session. Standard errors are given in the
parentheses.

two other groups. Controls and first-episode patients do
not differ. Between the two recording sessions, no differ-
ence is found for each group. Nevertheless, one can note a
tendency for the linear complexity to decrease in recurrent
patients.

NONLINEAR ANALYSIS. For the first recording session,
the first-episode group shows a lower level of entropy K
and a higher level of S, than controls; however, these
indices do not differ either between controls and recurrent
patients or between the two groups of depressive patients.
For the second recording session, K and S, do not differ
between groups. Between the two recording sessions,
entropy increases and S, decreases for the first-episode
patients. No difference is found for these indices for the
two other groups.

The main results of these linear and nonlinear charac-
terizations (values of A and K) are visually depicted in
Figure 3.

Discussion

Dynamical Analysis

The rejection of the null hypothesis in 28% of the studied
windows establishes the presence of a nonlinear phenom-
enon underlying the global measurements taken from the

Table 5. Mann—Whitney U Test Results of the Comparisons Between Groups for the Two
Recording Sessions for the Linear (A) and Nonlinear (K and S,) Indices

First recording

Second recording

Cont./Rec. Cont./1st ep. Rec./1st ep. Cont./Rec. Cont./1st ep. Rec./1st ep.

A

VA —2.00 —0.26¢ —1.58 -2.89 -0.52 -2.14

P 0.046 0.793 0.115 0.004 0.606 0.032
K

z -0.21¢ —2.00 —147¢ —0.46 -1.03 -1

p 0.834 0.046 0.141 0.643 0.302 0317
So

Zz -0.21¢ —2.10¢ —1.21¢ —0.58 —0.32¢ —0.43

r 0.834 0.035 0.227 0.563 0.747 0.668

Cont.: controls; Ist ep.: first-episode patients; Rec.: recurrent patients.

@ Z and p corrected for ties.
Bold characters represent significant differences (p < .05).
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Table 6. Wilcoxon Matched Pairs Test Results of the
Comparisons between Recording Sessions for the Three
Groups for Linear (A) and Nonlinear (K and $,) Indices

Controls 1st-episode patients Recurrent patients

A

z —0.28 —0.74¢ -1.69

p 0.779 0.462 0.091
K

z -1.26 —2.20 —0.68

p 0.208 0.028 0.499
So

z —1.54 —2.20

p 0.134 0.028 1

Bold characters represent significant differences (p < .05).
“Z and p corrected for ties.

patients’ brains; however, these results cannot be taken as
equivalent to the presence of stable low-dimensional
chaos. Rather, we can only state that the possibility that
chaos serves as a signature has not been ruled out.

The difficulty in establishing more precisely the nature
of an underlying nonlinear process could be due to a
number of interrelated methodological drawbacks. First,
the reconstruction of the dynamic was realized in a
12-dimensional space, which may be too low to ensure the
characterization of a higher dimensional dynamic (say
dimension superior to 6). Second, the differentiation be-
tween chaos and noise in a spatially extended system has
been shown to be difficult (Grassberger 1989; Mayer-
Kress and Kaneko 1989). Thus, the indices computed with
nonlinear methods such as the ones used here can be
considered only as discriminating indices and not as
specific characterization of nonlinear dynamics.

The linear and nonlinear indices used in this paper
address two main characteristics of the trajectory once
reconstructed: the linear index characterizes the shape of
the scatter of reconstructed data points, while the nonlinear
prediction characterizes the temporal evolution of their
trajectory. Thus the linear index quantifies statistical
properties of the embedded data, whereas the nonlinear
indices quantify dynamical properties of brain activity.
These two characterizations establish major differences in
the temporal evolution of brain activity in first-episode
and recurrent depressive patients.

In the first recording session, the two groups of depres-
sive patients cannot be differentiated on the basis of either
nonlinear or linear indices. Nevertheless, first-episode
patients have a lower entropy and a higher S, than the
controls. Within the first-episode group, a decrease of
entropy and a decrease of stationarity in brain dynamics
are observed during the depressive episode. These results
suggest that the dynamical changes are unstable in first-
episode patients. On the other hand, recurrent patients
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have a lower linear complexity than the controls. Thus the
previous treatment or recurrence makes an important
difference in the dynamical changes linked with the
depressive episode. During the major depressive episode,
when the patients are compared to the controls, recurrent
patients are characterized by the statistical properties of
the data, whereas the first-episode group is characterized
by nonlinear dynamical indices.

One can speculate that in the case of depression, a low
level of complexity in the brain dynamics is related to the
reduction of cognitive production in the depressive behav-
ior and ideation, described as ruminations and psychomo-
tor retardation (Widlcher 1983b).

Clinical Implications

Although their clinical improvements are similar, treat-
ment-induced dynamical changes differ between the two
groups of patients: 1) the entropy increases toward nor-
mality for the first-episode patients, but keeps its initial
level in recurrent patients; and 2) the linear complexity
differs between recurrent patients and the two other groups
at day 21. These differences between electrophysiological
and clinical indices may reflect different temporal scales
between behavioral and physiological levels of recovery
processes (Ashton et al 1988).

These results suggest that first-episode and recurrent
patients are drastically different. Recurrence could be
characterized by a specific inertia in the effect of the
treatment inducing a different temporal scale of changes
between the two groups. These differences in the response

-
K
50+
40+
30T
04—ttt
0.2 0.3 0.4 0.5 A 0.6

Figure 3. Schematic summary of the main results obtained with
linear (A) and nonlinear (K) indices. Light gray corresponds to
the first recording session and deep gray to the second one.
Cont.: controls; 1st ep.: first-episode patients; Rec.: recurrent
patients; K: entropy in sec”'; A: linear index. The axis of the
ellipses corresponds to the standard errors on abscissas, and
ordinates. The dotted arrows represent the significant differences
(p = .05) between groups and/or recording sessions.
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to the treatment may be due either to differences between
the subjects’ histories (number of episodes, length of the
disease, affective environment, etc.), or to specific inter-
actions between dynamical state and pharmacological
effects. No systematic link has been made so far between
these different behaviors and clinical or pharmacological
treatment. Only a longitudinal study could show whether
or not recurrent patients keep their inertia induced by the
long-lasting pathology; however, our results tend to show
that recurrent patients display a characteristic signature of
their global brain dynamics that is difficult to modify
during drug treatment and hospitalization. It emphasizes
the need for therapeutic follow-ups to avoid recurrence,
and the necessity of finding new strategies to cause the
recurrent patients’ brain dynamics to be altered.

Conclusions

Changes in brain dynamics have been quantified in mental
diseases with new quantitative tools. The results show that
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