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Nonlinear EEG Changes Associated with Clinical
Improvement in Depressed Patients

Nitza Thomasson,1 Laurent Pezard,1,3 Jean-François Allilaire,2

Bernard Renault,1 and Jacques Martinerie1

Assuming that the depressive syndrome could be related to a cerebral ‘‘dy-
namical disease,’’ we attempted to describe in a longitudinal and quantitative
manner the modifications of brain electrical activity during depressive epi-
sodes treatment. This study tested whether mood improvement during therapy
(pharmacological treatment or electroconvulsive therapy) is related to con-
comitant modifications of brain dynamics. The evolution of brain activity
and mood were measured, every two days during treatment for three de-
pressed patients and over three weeks for a control subject. Complexity of
brain electrical activity was computed for each site of recording (EEG with
31 electrodes), leading to maps of complexity; depressive mood modulations
were quantified using a self-assessment scale. The results show a specific
organization of depressed patients’ brain dynamics compared to the control’s
dynamics. Moreover, covariations between nonlinear changes in brain dy-
namics and mood improvement are observed during the remission of de-
pressive episodes.
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INTRODUCTION

The development of nonlinear dynamics analysis has provided useful
tools in the study of physiological systems’ activity. Within this framework,
it has been proposed that transition between a healthy behavior towards

1Unité de Neurosciences Cognitives et Imagerie Cérébrale. LENA—CNRS UPR 640—
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a pathological state could be related to a bifurcation, e.g. the transition
between a chaotic behavior to a periodic one, or vice versa. This phenomena
called ‘‘dynamical diseases’’ (Bélair, Glass, an der Heiden, & Milton, 1995;
Mackey & Glass, 1977; Mackey & Milton, 1987) is related to modifications
in physiological systems’ control parameters leading to abnormal dynamics.

In the case of depression, altered biological rhythms such as circadian
rhythm (Wehr, Goodwin, Wirz-Justice, Craig, & Breitmeier, 1982) cortisol
secretion (Hollister, Davis, & Davis, 1980; Lemelin, Baruch, Vincent, Ever-
ett, & Vincent, 1997; Lemelin & Baruch, 1998) or melatonine secretion
(Rubin, Heist, McGeoy, Hanada, & Lesser, 1992) have been observed.
Moreover, depressed speech rhythms are altered due to an increase in
pause time (Georgieff, Dominey, Michel, Marie-Cardine, & Dalery 1998;
Szabadi, Bradshaw, & Besson, 1976) and overall behavior is slowed down
as revealed by actometric studies (Dantchev & Widlöcher, 1998; Widlöcher,
1983). Furthermore, electroencephalogram (EEG) studies have also shown
alterations in brain dynamics during depressive episodes (Nandrino et al.,
1994; Pezard et al., 1996). All these rhythm modifications observed in de-
pression have been considered as landmarks of a ‘‘dynamical disease’’
expressed both at physiological and behavioral levels (Bélair et al., 1995).

In such dynamical framework, depression could be related to a bifurca-
tion from an healthy brain dynamics to a pathological one (Mackey & Glass,
1977; Mackey & Milton, 1987). Since this process can not be experimentally
observed, we considered the reverse transition: the clinical improvement
in depressed patients during their treatment. We hypothesized that changes
in brain dynamics from a pathological towards an healthy state could occur
in accordance with clinical improvement. These changes can either be
related to an abrupt change in the brain dynamics’ characteristics (i.e.
bifurcation) or to progressive modifications related to nonstationarity. In
order to test this hypothesis, our study quantifies one of the main character-
istics of depression (i.e. painful mood) and nonlinear changes in brain
dynamics every two days during therapy. We then investigated the relation
between brain dynamics’ modifications and clinical improvement.

Depressive mood was evaluated with a self-assessment scale (von Zers-
sen, Koeller & Rey, 1970) which takes into account various subjective
dimensions corresponding to a depressive ‘‘state of mind’’ (Horowitz, 1987).
Brain dynamics’ complexity was quantified using a nonlinear method based
on multi-channel recordings and nonlinear forecasting (Pezard, Martinerie,
Breton, Bourzeix, & Renault, 1994; Pezard, Martinerie, Müller, Varela, &
Renault, 1996). The complexity of the dynamics was characterized by the
degradation pattern of the EEG time series predictability, which we refer
to as entropy. This method characterizes the spatio-temporal brain dynam-
ics using either global entropy or maps of local entropy. Multivariate surro-
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gate data (Prichard & Theiler, 1994) were used to test the presence of
nonlinear processes in our EEG data.

Furthermore, modifications of brain dynamics have been studied using
decomposition of local entropy measurements into principal components.
This analysis permits one to define the main spatial patterns involved in
the brain dynamics evolution along therapy and the complexity associated
with each pattern. Drastic changes in these patterns were considered as
signs of bifurcations.

The ‘‘dynamical disease’’ principle implies that, whatever the therapy
used, the clinical improvement should be associated with similar brain
dynamics reorganization. In order to test the generality of this principle,
depressed patients with different histories of depression and therapies were
recorded. Two depressed patients with pharmacological treatment pres-
enting either a recurrent or a first depressive episode, and a patient with
electroconvulsive therapy (ECT), suffering from severe depression were
recorded every two days during hospitalization. Finally, since no previous
study has dealt with such a longitudinal study of nonlinear brain dynamics
modifications, a control subject free of any treatment was also recorded.

MATERIALS AND METHODS

Subjects

After being given complete information about the goal of the investiga-
tion, three depressed patients (Mrs. G., Mss. H. and Mrs. R.) and a control
subject (Mrs. I.) gave their written consent to participate to this research.
The depressed patients stayed in La Salpêtrière Hospital (Paris) and re-
ceived either pharmacological treatment or ECT with regards to depression
intensity and resistance. They were selected according to the DSM-IV
(American Psychiatric Association, 1987) criteria for a major depressive
episode. Their scores to depression rating scales assessed their depressive
state at the arrival (Table 1).

Mrs. G. (53 years old) had already suffered at least three major de-
pressive episodes and was treated by pharmacotherapy. Her pharmacologi-
cal treatment started after a one week wash-out of previous medication.
Mss. S. (30 years old) entered hospital for a first depressive episode, was
medication-free and received a pharmacological treatment. Mrs. R. (39
years old) suffered from resistant depression for several years and asked
for ECT. The time-course of treatments and experimental sessions are
described in Fig. 5.

The control subject, Mrs. I. (47 years old) suffered neither any psychia-
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Table 1. Scores to Global Rating Scales of Depression (HAMD-21 &
MADRS), to Psychomotor Retardation (ERD), and Anxiety (COVI) Scales

Performed Upon Arrival and Discharge of Each Patient

MADRS HAMD-21 ERD COVI

Mrs G. 27 25 8 22
Arrival Mss S. 20 21 12 4

Mrs R. 24 20 25 4
Mrs G. 12 11 3 18

Discharge Mss S. 10 10 5 2
Mrs R. 8 9 15 2

tric episode nor any neurological trouble. In her case, depression scales
proved the absence of depressive symptoms.

Experimental Protocol

Subjects have been examined every two days during their hospitaliza-
tion (between two and three weeks). The EEG-recordings and mood self-
assessment were performed between 9H. and 11H. AM in order to minimize
mood nyctemeral variations. Mrs. G. was thus submitted to 10 experimental
sessions (EEG and self-assessment), Mrs. R. and Mss. S. to 7, and Mrs. I.
(control subject) to 9.

Two kinds of clinical evaluations were chosen to evaluate the depres-
sion intensity and the subjects’ mood evolution: (a) Clinical interviews using
global rating scales of depression (HAMD-21: Hamilton, 1960; MADRS:
Montgomery & Asberg, 1979) and scales pointing out specific dimensions of
depression (psychomotor retardation: Widlöcher, 1983; anxiety: Lipman &
Covi, 1976) were realized at the patients’ arrival and discharge. (b) Before
each EEG-recording, the subjects filled the BfS’ scale questionnaire (von
Zerssen, Koeller, & Rey, 1970; French translation: Bobon & Bobon-Shrod,
1974). This scale permits a scalar evaluation (between 0 and 56) of de-
pressive mood intensity from ‘‘relaxed’’ (low scores) to ‘‘extremely de-
pressed’’ (high scores).

EEGs were recorded, in a resting eyes closed condition, on 31 deriva-
tions referred to the ears and set on the scalp in an equidistributed manner
(Fisch, 1991). Vertical electro-oculograms (EOG) were recorded in order to
perform off-line correction of eye movements (Gratton, Coles, & Donchin,
1983). The lower band-pass limit was 0.08 Hz for EEG and 0.02 for EOG.
Both upper band-pass limits were 100 Hz. The data were digitized on-line
on 12 bits using a 1 kHz sampling rate. The signal was stored on the hard
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disk of a PC and then transferred onto the disk of a HP-K200 server for
further processing.

Methods

Nonlinear Quantification

Brain electrical activity was analyzed using a numerical method based
on multi-channel recordings and non-linear forecasting (Pezard et al., 1994;
Pezard, Martinerie et al., 1996). It permits one to obtain local and global
entropies (respectively noted K and �K�) which quantify the loss of predict-
ability for each of the 31 recording sites (K) and for the global EEG
recording (�K�). In turn, an increase of entropy corresponds to less predict-
able signals and in consequence to a more complex dynamics. For each
day of recording, each subject was characterized by indices (either local or
global) averaged over the selected EEG-segments.

Moreover, since signals generated by linear stochastic processes can
exhibit similar characteristics as nonlinear deterministic systems (Rapp,
Albano, Schmah, & Farwell, 1993), the presence of nonlinear structure in
EEG-segments was ensured by testing the significance of the difference
between �K� obtained for raw data and �K� obtained for a set of 39 multi-
channel surrogate data (Prichard & Theiler, 1994). We describe below
the procedure (summed up in Fig. 1) repeated for each subject and each
recording session.

For each recording session, ten 8-second multi-channel EEG-segments
free of EEG and eyes movements artifacts were selected (except in the
case of Mss. S. recording session n�4 for which only 5 EEG-segments were
obtained). A total of 325 EEG-segments were thus used in this study
(10 � 10 for Mrs. G., 6 � 10 � 5 for Mss. S., 7 � 10 for Mrs. R. and 9 �
10 for Mrs. I.). For each channel, the signal was shifted to zero mean
and rescaled to unit variance. Each EEG-segment was used to build an
observation matrix corresponding to the multi-channel embedding of a
trajectory defined by 8192 measurement-vectors in a 31-dimensional space.

Nonlinear forecasting of the system time evolution was computed using
a simple local linear model (Sugihara & May, 1990). The linear correlation
coefficient �j(p) between the jth component of the observed measurement-
vectors (value on the jth channel) and the jth component of the predicted
vectors was computed for each prediction time p (p � 1, . . . , 10). This
procedure leads to a prediction curve for each channel, which we will enter
in the computation of the localized entropy (K). The average value:
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��(p)� � (1/k) �k

j�1
�j(p)(p � 1, . . . , 10)

constitutes the average prediction curve which will enter in the computation
of the global entropy (�K�).

We then defined the entropy (either local or global), equivalent to
Kolmogorov entropy, as the rate of predictability loss in our signals from
the relation (Tsonis & Elsner, 1992; Wales, 1991):

ln(1 � �) � 2 ln(S0/(2�)) � 2KP�

where S0 is an index of representativity of the learning set, � the variance
of the observed values, p� the first few prediction steps (� is the sampling
period). In our case, we used the first three points of each prediction curve
(either localized or average) to estimate K.

Surrogate Data Construction and Linearity Test

Surrogate data were constructed from raw data by randomizing their
phases in the Fourier domain (Theiler, Eubank, Longtin, Galdrikian, &
Farmer, 1992). To analyze the presence of non-linearities in multichannel
EEG recordings, we used multivariate surrogate data that preserve the
cross-correlation between channels (Prichard & Theiler, 1994). For each
EEG segment, �K� was obtained from the raw data and an ensemble of
surrogate data. Sets of 39 surrogate data were used to ensure a confidence
level of .025 for the one-tailed test of the null hypothesis. In order to ensure
reliable null hypothesis test we used, as a robust empirical measure of
significance (Rapp, Albano, Schmah, & Farwell, 1993), the Monte-Carlo
probability (Barnard, 1963; Hope, 1968):

Pm � [�(�Kraw� 	 �Ksur�)]/(39 � 1)

(where � denotes the number of cases fulfilling the condition). We accepted
the dynamics to be nonlinear when entropy (�K�) for the surrogate data
was significantly higher than that for the raw data. 13,000 multi-channel
segments were thus characterized in this study (325 raw data � 39 � 325
surrogate data).

Principal Component Analysis (PCA)

PCA was used to better characterize the neuronal changes involved
in the remission of depressive episode. It was computed on the data sets
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composed of 31 entropy measurements obtained for all the EEG-segments
(between 65 to 100) and for each subject. Such a representation serves
to disentangle independent predominant components of the dynamics
(Eckart & Young, 1939). These components are characterized by their
loadings (contribution of each electrode to spatial organization of the com-
ponent) and by their scores (projections of the measurements on the princi-
pal component). We obtained spatial pattern of the dynamics by projecting
each score onto the electrode space (Fig. 5).

Statistical Tests

For each subject, the correlation coefficient (�) between the mood
evaluation and the physiological indices (either global entropy or spatial
mode scores) along the n experimental sessions were computed. Since
the data were recorded from the same subject, we assessed the statistical
significance of � using a non-parametric test based on a Monte-Carlo simula-
tion (Lebart, Morineau, & Fénelon, 1982). Namely, we built n! permutations
of the physiological indices series and computed � between those surrogate
series and mood assessment scores. The null hypothesis of independence
was rejected when the probability to obtain �surrogate
�observed was lower
than 0.05.

RESULTS

In the case of the patients, the decrease between arrival and discharge
scores to global depression, psychomotor retardation and anxiety rating
scales, shows an improvement of at least 50% (Table 1) and fulfils criteria
of clinical remission. Furthermore, scores to mood-assessment scales indi-
cate an attenuation of the depressive mood (Fig. 5).

For each subject, surrogate data test ensures the presence of nonlinear
processes in EEG-signals: the null hypothesis of linearly correlated noise
was formally rejected for 26% of the segments studied (18% for Mrs. G.,
27% for Mss. S., 24% for Mrs. R. and 36% for the control subject). These
results are higher than the 2.5% of rejection which should be observed if
the linear hypothesis was true, and they thus justify the use of nonlinear
methods for EEG-quantification.

For the patients, averaged global entropy slightly decreases along treat-
ment (negative slopes of the regression line: Mrs. G.: �1.0; Mss. S.: �1.2;
Mrs. R.: �6.1) and depicts an important significant correlation with the
mood modulation (Table 2 and Fig. 2). For the control subject (Mrs. I.),
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Fig. 1. Summary of the numerical procedure. See text for details.

this index slightly increases along the recording sessions (positive slope of
the regression line: �0.9) and does not co-vary with her mood (Table 2
and Fig. 2).

In order to approach the neuronal changes involved in the clinical
improvement, we proceed to PCA decomposition on the entropy maps

Table 2. Co-Evolution Between Mood Assessment Scores and Physio-
logical Indices (Either Global Entropy and First Principal Component
Scores) for the Depressed Subjects (Mrs G. Mss S. and Mrs R.) and
the Control Subject (Mrs I). �: Correlation Coefficient; P: Probability
of the Independence Hypothesis Rejection. Non-Significant Covaria-
tions Between Mood and Physiological Indices are Shown in Italics

Global Entropy First Component Scores

� P � P

Mrs G. 0.65 0.036 0.64 0.028
Mss S. 0.91 0.004 0.83 0.016
Mrs R. 0.92 0.002 0.90 0.007
Control �0.45 0.890 �0.50 0.900
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Fig. 2. Longitudinal variation of global entropy (�K�) and scores to mood assessment
scale for each subject. Entropy evolution is represented with open circles, and corresponds
to the left ordinate axis scale. Depressive mood modulation is depicted with black squares
and corresponds to the right ordinate axis scale. Days of recording are given in abscissa.
Depressed patients: Mrs. G., Mss. S. and Mrs. R.; Control: Mrs. I.

data sets. The percentages of variance explained by the first ten components
are depicted on Fig. 3. For each subject, the first two principal components
were selected since each explains at least 10% of variance (cumulated
percentages of variance: 38.6% for Mrs. G.; 48.2% for Mss. S.; 62.0% for
Mrs. R. and 40.0% for the control). Their loadings are depicted on Fig.
4 and present two different patterns: (1) the first principal component
corresponds, for all the subjects, to an overall level of complexity equidistri-
buted over the scalp and (2) the second principal component depicts differ-
ent patterns between the control subject and the depressed patients; the
frontal electrodes have important loadings in the control subject whereas
they have low ones in the depressed patients.

On the basis of the strong and significant correlation observed between
the global entropy and mood scores for the patients only, we used the
principal components to study, in their case, the correspondence between
the spatio-temporal brain dynamics complexity and depressive mood along
the recording sessions.
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Fig. 3. Percentage of variance explained by the 10 first components of the principal component
analysis of entropy maps in the four subjects (Depressed patients: Mrs. G., Mss. S. and Mrs.
R.; Control: Mrs. I.).

For the patients, the evolution of the two main principal components
scores along the recordings session is different: the first component scores
co-vary with mood whereas the second component ones do not. The evolu-
tion of the first component reveals the daily modulation of brain dynamics
(Fig. 5): It represents the global level of the dynamics’ complexity and can
thus be compared to �K�. For all the patients, its scores values decrease
with treatment and clinical improvement. Significant positive correlations
between the first component scores and self-assessment scores were ob-
served in all patients (Table 2). Moreover, in the case of Mrs. R., a drastic
change in the global level of brain dynamics’ complexity between day 4
and day 7 is associated with a clear drop of the mood assessment score.
This phenomenon could be interpreted as a bifurcation (see Fig. 5c). For
the other patients, the changes are less abrupt and could be related to
nonstationarity of the brain dynamics. The evolution of the second compo-
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Fig. 4. Representation of the loadings (L, normalized for each subject to vary between �1
and 1) for the first two principal components and for each subject. Top and bottom of the
figure represent the spatial organization of respectively the first and the second principal
component. For each mode, top and frontal views of the head are respectively represented
on the first and on the second line. Depressed patients: Mrs G., Mss. S. and Mrs. R.; Control:
Mrs. I.

nent scores does not depict any significant correlation with mood assessment
scores. This component is thus not directly associated with mood im-
provement.

DISCUSSION

On the basis of a covariation between depressive mood and global brain
dynamics’ entropy, we attempted to characterize the nonlinear changes of
spatio-temporal brain activity that occur during the treatment of depressed
patients. The entropy patterns decomposition has provided us with two
major components. The first one is similar for all the subjects and depicts



Fig. 5. Evolution of self-assessment scores (S. a.), treatments (Ph. T.: pharmacological; ECT:
electroconvulsive therapy), maps of local entropies (K in sec�1) and first principal component
scores (S) along therapy for each patient. (a): Mrs. G. was treated with an anti-depressant
(black line: citalopram, 20 mg/day from day 1 to day 16 and 40 mg/day after), anxiolytic
(middle line: alprazolam, 20 mg/day) and a hypnotic (bottom line: cyamemazine 25 mg/day).
(b): Mss S. was treated with an anti-depressant (black line: clomipramine 150 mg/day). (c):
Mrs. R.’s ECT sessions are represented by V signs.
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a pattern of equidistributed loadings which can be related to the global level
of entropy. On the contrary, the second one depicts a specific organization
characterized by lower loadings in the frontal areas of the depressed patients
as compared to the control subject. This organization could be related to the
alteration in the functioning of the frontal and prefrontal cortex (George,
Ketter, & Post, 1994) in depression and may be a possible electrophysiologi-
cal basis for the observed deficiency of cognitive processes.

The major observation of our study concerns the co-evolution of the
global entropy and of the first component scores with mood variations
along patients’ treatment. Moreover, raw entropy maps depict comparable
patterns for similar self-assessment scores in each patient (see for example
Mrs. G.: day 0 and 18 are related to high scores whereas day 9 and 16
are related to low scores). These nonlinear changes of brain dynamics, in
accordance with clinical improvement, attest of a correspondence between
a mental state (depressive mood) and a cerebral state (brain dynamics
characteristics). They thus appear as a common expression of behavioral
and psychological recovery, independently from the treatment used. Such
results strongly suggest that mood can be considered as a phenomenon
emerging from the global interactions in brain activity as revealed by dy-
namical methods.

The changes in the first component scores, along treatment, can be
related, in the case of Mrs. R., to the existence of a bifurcation in brain
dynamics concomitant with mood modulation. This is particularly illustrated
during her ECT treatment where a clear drop in her mood level is associated
with a drastic change in the entropy level (Krystal, Zaidman, Greenside,
Weiner, & Coffey, 1997). Nevertheless, in pharmacological treatments, such
nonlinear changes are less abrupt and seem to lead to less stable states
than in the case of ECT. It appears that the two treatments do not act in
the same manner on the brain dynamics: ECT would lead to a critical change
i.e. bifurcation and pharmacotherapy induce a progressive modification.
Moreover, these results show that the first component is associated with
mood improvement inducing the clinical recovery. In this way, this compo-
nent could be compared to a principal spatial mode implied, as a driving
mode, in the bifurcation process (Haken, 1987).

Concerning the second component, specific frontal reorganization in
depressed brain dynamics has been reported, but it has not been directly
implicated in mood improvement. These observations suggest that this
second component could be compared to a second spatial mode depending
upon the first one in the bifurcation process. In other words, cognitive
processes recovery in the depressive syndrome, represented by the second
component, could be driven by painful mood improvement represented by
the first component.
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The existence of nonlinear changes in brain dynamics associated with
the changes in the patients’ clinical state leads to reconsider the debate
between state and traits in depression. We have shown that brain dynamics
is not a constant trait of the pathology but rather the sign of a particular
state. The passage between state, i.e. the clinical improvement, would thus
be a modification of the depressed brain dynamics towards a new state.

CONCLUSION

This longitudinal and quantitative study of three depressed patients’
brain dynamics demonstrated their specific spatial organization in regards
to one control subject: The first two spatial modes have been respectively
associated to global depressive mood and to cognitive processes. However,
the main topic was the demonstration of a longitudinal covariation between
brain dynamics complexity and mood, during different treatments of de-
pressed patients. It demonstrates for these subjects a clear association
between state of mind and brain dynamics organization. Moreover, what-
ever the therapeutic strategy used, the brain dynamics’ evolution is similar
for all patients and reveals a common way of recovery.
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